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ABSTRACT

The problem studied in this thesis is the midcourse correction of
the path of an interplanetary vehicle by means of several intermittent

thrust impulses. The analysis is linearized by assuming that the
vehicle's actual path differs only slightly from a known pre-computed
reference path. The difference between the actual path and the ref-
erence path is known as the variant path. The linearized equations of
motion are those in which the dependent variables are the position and

velocity components of the variant path.

The emphasis in the thesis is placed on the analytic solution of the
linearized equations of motion. Two distinct methods are developed
for obtaining an analytic solution when the reference trajectory is an
ellipse. The first method involves the separation of the sixth-order
system into two independent systems, one of fourth order and the
other of second order. Although the two independent systems have
variable coefficients, both are integrated directly in closed form.
The second method of solution utilizes variational techniques to de-

termine the effect on the path of small variations in a set of six orbital
elements. The two solutions are shown to be mathematically equiva-
lent.

The analytic solution is used to obtain closed-form expressions
for the elements of all the matrices appearing in the guidance equa-
tions.

Both fixed-time-of-arrival and variable-time-of-arrival guidance

schemes are discussed. In fixe'd-time-of-arrival guidance the three-
dimensional velocity correction vector is expressed as a linear func-
tion of the three-dimensional predicted position variation at the
destination. In variable-time-of-arrival guidance both the correction
vector and the position variation vector to be corrected are expressed
as two-dimensional vectors in a special coordinate system known as
the critical-plane coordinate system.
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In the case of variable-time-of-arrival guidance an empirical

technique is developed for determining the optimum time to apply a
midcourse correction. The optimum correction time is a function of

a single characteristic of the vehicle's variant path.

There are three types of singularities that appear in the fixed-
time-of-arrival guidance equations for elliptical reference trajectories.

Two of the types are readily explained physically. The third type, no
previous mention of which has been found in the literature, is shown to

be related to the minima of the time-of-flight curves obtained from
Lambert's theorem. No finite fixed-time-of-arrival correction can be

computed at a correction time corresponding to any one of the three
types of singularity. If variable-time-of-arrival guidance is used, two

of the singularity types are effectively cancelled out, but the third type
still remains.

Both Earth-based and self-contained navigation systems are
described. The function of the navigation system is to determine the
vehicle's variant path from measurements made during the flight. The

six parameters selected to define the variant path are the components
of position variation and velocity variation at the nominal time of
arrival at the destination.

In the self-contained navigation system vehicle position is determined
from the optical sighting of the angles between pairs of celestial bodies,
and the variant path is computed after several position determinations
have been made. A survey is made of all first-magnitude stars to
determine which are most useful for position determination. A graphical

technique is evolved for selecting the angular sightings which result in
the greatest accuracy of position determination.

The guidance theory is illustrated by a numerical example of a long-
duration Earth- Mars trajectory.

A midcourse guidance system is outlined which utilizes the analytic
results of the theoretical investigation.
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CHAPTER 1

INTRODUCTION

1.1 Object

The object of this thesis is to utilize the techniques of linear per-

turbation theory and the characteristics of elliptical motion in making

an intensive analytical study of interplanetary midcourse guidance.

Possible applications of the results of the academic study in the design

of a guidance system are to be considered.

1.2 Summary of Chapter 1

This introductory chapter contains a general discussion of the mid-

course guidance problem and indicates the relationship between the

present study and previous work in the field. There is also a synopsis

of the material in succeeding chapters and in the appendices.

1.3 Phases of an Interplanetary Mission

A one-way interplanetary journey from one planet to the vicinity

of a second planet may be divided into three phases - the launch phase,

the midcourse phase, and the terminal phase. In the launch phase suf-

ficient thrust is imparted to the vehicle so that it escapes the gravita-

tional field of the launch planet and is injected into a heliocentric ballis-

tic trajectory which carries it toward the desired destination. The mid-

course phase is the phase in which the vehicle is traversing the helio-

centric ballistic trajectory. The terminal phase involves any final ma-

neuvering required to achieve the specific objectives of the mission.

The purpose of guidance during the launch phase is to inject the

vehicle into the proper heliocentric trajectory. Because the launch

guidance system is not ideal, the velocity of the vehicle at injection is

subject to uncertainties which cause the actual heliocentric trajectory

to differ from the desired trajectory. The function of the' midcourse

guidance system is to make measurements from which the differences

between the two trajectories can be ascertained and then to compute a

correction which can be applied to the vehicle so that it will reach its

destination.

1



1.4 The Reference Trajectory

The desired heliocentric ballistic trajectory is known as the re__f-

erence trajectory. The determination of a suitable reference trajectory

for a given mission is a separate field in itself which falls beyond the

scope of the present paper. Battin (1)* presents a technique for generating

three-dimensional reference trajectories.

For the purposes of this study it is assumed that a reference tra-

jectory has been pre-computed and that its characteristics are known to

the designer of the midcourse guidance system.

1.5 Sequence of Operations

In a typical midcourse guidance system the sequence of operations

is as follows:

1. A series of measurements is made. The measured values are

compared with the computed values, i.e., those values that would be

measured if the vehicle were on the reference trajectory and if there

were no errors in making the measurements themselves.

2. The differences between the measured values and the ideal values

are processed by a computer, usually a digital computer, to determine

the difference between the vehicle's actual ballistic trajectory and the

reference trajectory.

3. The required midcourse correction is computed as a function of

the difference between actual and reference trajectories and of the time

at Which the correction is to be applied.

The signals representing the midcourse correction constitute the

output of the guidance system and the input to the control system. The

operation of the control system in actually applying the computed cor-

rection is not considered in this analysis.

1.6 Midcourse Guidance Development at the M. I.T. Instrumentation

Laboratory

Of the various midcourse guidance systems that have been suggested

during recent years, three, all apparently developed independently, are

*When not otherwise identified, single-digit or two-digit numbers
indicate correspondingly numbered items listed in the References.



considered by the author to be representative of current thinking in the

midcourse guidance field in this country. The first of the three isthe

work of the M. I.T. Instrumentation Laboratory, the Second is the sys-

tem proposed by the Jet Propulsion Laboratory of the California Insti-

tute of Technology, and the third comes from the Ames Research Cen-

ter of NASA.

Reference (2), the first report in the M. I.T. series, discusses the

technical feasibility of an unmanned round-trip reconnaissance of Mars.

It ts estimated that, if no midcourse corrections are made, the position

error of the vehicle at its nominal time of arrival at Mars will be of the

order of several hundred thousand miles. The weight break-down of a

vehicle whose total weight is 300 lb. allots 80 lb. for the midcourse pro-

pulsion device and propellant and 60 lb. for guidance and control equip-

ment, including the central computer.

An analysis of the,proposed midcourse guidance system is presented

in Reference (8). Unlike most studies that preceded it, this report uses

a three-dimensional mathematical model. The system is completely

self-contained within the space vehicle. The measurements consist of

the angles subtended at the vehicle between the lines of sight to pairs of

celestial bodies. A group of four or more angular measurements made

within a relatively short time interval is used to estimate the difference

between the vehicle's position on the actual trajectory at the nominal

time of the measurements and the corresponding position on the refer-

ence trajectory; an estimate of the error in the vehicle's clock is also

obtained. The groups of angular measurements are made at several

pre-determined times during the journey.

Position estimates at two distinct times are sufficient to compute a

midcourse correction. After each set of measurements has been com-

pleted, a correction is made, based on the position estimate just deter-

mined and the position estimate at the immediately preceding time of

measurement.

Each correction is treated as a thrust impulse, which causes a step

change in the vehicle's velocity vector. The computation of the correc-

tion is in terms of the required velocity step. Linear perturbation theory,

based on the known reference trajectory, is used in all computations.



The report also contains an error analysis, including the effects of

uncertainties in launch velocity, uncertainties in angular measurements,

uncertainty in the measurement of elapsed time, and uncertainties in the

application of the computed midcourse corrections.

In Reference (3)the midcourse correction is computed under the as-

sumption that the destination is a point that is fixed both in heliocentric

space and in time. Computation of the correction on this basis is known

as fixed-time-of-arrival (FTA)guidance. For many space missions

small variations in the time of arrival at the destination can be tolerated.

In Reference (4) Battin developes the theory for a navigation concept in

which the time of arrival is permitted to vary slightly, so that the mag-

nitude of the required step change in velocity can be minimized. This

type of computation is called variable-time-of-arrival (VTA} guidance.

A digital computer study in Reference (4} indicates that a saving of

as much as 50% in weight of propellant can be realized by the use of

VTA guidance. In a typical one-way trip to Mars in which four VTA

midcour_e corrections are applied, the first correction, made soon

after launch, is by far the largest; the magnitude of the velocity step is

126 ft./sec. The sum of the magnitudes of the four corrections, which is

directly proportional to the weight of propellant consumed, is 179 ft./sec.

The rms value of the predicted position error at the destination is 26

miles.

The analysis in (3}and (4}, as well as that in (1}, is contained in

the appendices of a four-volume proposal (5} for a recoverable inter-

planetary space probe. Chapter 5 of the proposal contains the results

of an extensive computer study of the guidance system. There are also

chapters describing the on-board digital computer, the communications

system, and the propulsion system for supplying the corrective thrust

impulses.

References (6}, (7}, and (8} are additional contributions by Battin.

All three are concerned with the problem of optimizing particular

phases of the guidance system. In (6} the problem of selecting angular

sightings to be used in determining position is considered. Optimum

combinations of three sightings are found for the case when there is



no clock error. When errors in both the clock and the sightings are

taken into consideration, the maximum likelihood method is applied to

estimate position from a redundant set of measurements.

The first part of (7)uses the filter theory approach to determine

the best estimate of the actual path of the vehicle when more than two

position fixes have been made. In the second part of (7) clock errors

are neglected, individual angular measurements are used directly to

estimate the actual path without the intermediate step of computing a

position fix. An optimizing procedure is developed for selecting the

particular angular measurement which provides the maximum reduc-

tion in the uncertainty of the estimate of the actual path.

Reference (8)is a continuation of the development of a method for

selecting the best angular measurement. It also describes a decision-

making procedure for determining when a measurement should be made

and when a correction should be applied. There are tables of numerical

results obtained from a computer study in which the recommended

decision-making procedure is used in the midcourse guidance system of

a lunar probe.

1.7 Midcourse Guidance Development at the C. I.T. Jet Propulsion

Laboratory

The Jet Propulsion Laboratory's approach to midcourse guidance

is described in References (9), (10), and (11).

In (9)Noton discusses "post-injection" guidance, which includes both

midcourse guidance and terminal guidance. The mission is a one-way

journey from Earth to either Venus or Mars. The analysis is three-

dimensional, and it makes use of perturbation theory based on the pre-

computed reference trajectory.

Noton considers the possibility of using either a radio-command

system or a self-contained system for midcourse guidance. He makes

a strong case for the use of the radio-command system for relatively

simple missions, and he recommends the development of self-contained

systems to be used in conjunction with the radio-command system for

more sophisticated missions.



In the radio-command system several tracking stations on the surface

of the earth make measurements of the angular orientation of the line of

sight to the vehicle, of the vehicle's radial velocity (range rate}, and

possibly of range. The observed data are read into ground-based digital

computers to determine the vehicle's actual trajectory. The maximum

likelihood technique is used in the data processing. The required mid-

course velocity correction is then computed and is transmitted to the

vehicle as a radio-command signal from one of the tracking stations.

For a one-way interplanetary journey, one midcourse correction,

made within ten days after launch, is deemed to be adequate to achieve

the mission objective.

Both fix ed-time- of- arrival and variable-time- of- arrival guidanc e

concepts are described. It is pointed out that the fixed-time-of-arrival

midcourse correction can be expressed as a linear function of the three

components of the estimated position error at the nominal time of arrival

at the destination. The variable-time-of-arrival correction can be ex-

pressed as a linear function of only two components of the estimated

position error at the destination, these two components comprising the

estimated miss distance vector.

Several types of variable-time-of-arrival guidance systems are

listed. The "optimum" type is that which minimizes the magnitude of

the velocity correction. The "nonoptimum" types are all intended to

simplify the control system. In one such system the total impulse of

the propulsion system supplying the correction is assumed to be fixed;

in another the magnitude of the thrust impulse is variable, but its di-

rection is constrained to a particular plane (either the plane perpendic-

ular to the vehicle-sun line or the plane perpendicular to the vehicle-

earth line}.

Reference (10) is an extension of the work in (9). An iterative pro-

cess is developed for improving the accuracy of the computation of the

midcourse correction beyond that which is obtained from the initial

value given by linear perturbation theory. A statistical estimate is

made of the magnitude of the velocity correction and hence of the weight

of propellant required. Statistical theory is also used to estimate errors

at the destination.
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There is a detailed discussion of the method of determining the

vehicle's actual trajectory from radio measurements. During the in-

terval that the vehicle is visible to a particular tracking station, sam-

ples of each type of measurement are taken once every ten seconds.

Range rate information, obtained from doppler data, is shown to be the

most effective type of measurement for reducing the uncertainty in the

estimate of miss distance at the destination.

It is pointed out that all the guidance systems under consideration

are characterized by the fact that the two components of miss distance

are controlled. Thus, fixed-time-of-arrival guidance may be regarded

as a special case of nonoptimum variable-time-of-arrival guidance in

which time of arrival is the third controlled quantity. The magnitude

of fhe velocity vector at arrival is also suggested as a possible third

controlled quantity for a nonoptimum system.

Gates, Scull, and Watkins (11) present a general survey of the space

guidance problem, based on the work done at the Jet Propulsion Labora-

tory. The guidance phase defined as midcourse guidance in Section 1.3

is sub-divided by these authors into Earth-based midcourse guidance

and planetary-approach guidance. The former is the radio-command sys-

tem already described; the latter, which is used only during the last one

or two million miles of the interplanetary voyage, utilizes optical meas-

urements involving the line of sight to the destination planet. It is stated

that a single velocity correction derived from the earth-based midcourse

system reduces the probable position error at the destination from sev-

eral hundred thousand miles to several thousand miles, and the planetary-

approach system causes a further reduction to a few tens or hundreds of

miles.

1.8 Midcourse Guidance Development at Ames Research Center

The Ames contribution to midcourse guidance is contained in Ref-

erences (12)and (13). Both are concerned with guidance on a circum-

lunar mission, but the techniques developed are applicable to interplan-

etary missions as well.



Smith, Schmidt, and McGee (12) obtain an optimal estimate of a space

vehicle's actual position and velocity relative to the reference trajectory

by means of statistical filter theory. Whenever a set of measurements

is made, the old optimal estimate is up-dated by including the effect of

the new data in formulating a new optimal estimate. The key to applying

the method is the determination of the weighting matrix to be applied to

each new set of data; it is in the derivation of the equation for the weight-

ing matrix that linear filter theory is utilized.

McLean, Schmidt, and McGee (13) describe a fixed-time-of-arrival

guidance system. The adjoint method is used in deriving the guidance

equations. The analysis is three-dimensional and is based on linear

perturbation theory. The effect of neglecting nonlinear terms is dis-

cussed.

A computer study of the effects of uncertainties in the input variables

shows that the total weight of propellant required for midcourse correc-

tions is primarily a function of the accuracy of the launch guidance sys-

tem. Increasing the uncertainties in the measurements made during the

journey or increasing the uncertainties in the application of midcourse

cori_ections has little effect on propellant weight but materially increases

the magnitude of the predicted position and velocity errors at the destina-

tion.

1.9 Additional Literature Related to Midcourse Guidance

In this section additional papers pertinent to the study of midcourse

guidance are briefly summarized.

Porter (14) is one of the first to point out the necessity for midcourse

guidance on interplanetary flights because of the extreme sensitivity of

position at the destination to errors in launch velocity. He also states

that the determination of realistic three-dimensional reference trajec-

tories for interplanetary journeys is considerably more complex than is

indicated by a two-dimensional approach based on the assumption of co-

planar planetary orbits.

Lawden {15) presents one of the first analytic treatments of mid-

course guidance. He develops analytic expressions for the required

midcourse velocity correction for a two-dimensional two-body model.
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Baker (16) points out that the fundamental problem in interplanetary

guidance is how to get the vehicle to the proper destination; a knowledge

of the vehicle's position and velocity in transit may not be necessary to

solve the fundamental problem. He also indicates the computational ad-

vantages of working with the differences between observed measurements

and precomputed ideal values of the measurements in determining the cor-

rections to be applied.

Wheelon (17) makes a survey of the problems of midcourse and ter-

minal guidance. This paper was prepared as one of a group of papers

which constitute a lecture course with the title Space Technology. The

emphasis is on physical reasoning, with some analytic expressions being

derived to illustrate the techniques involved.

The work of Magness, McGuire, and Smith (18) is not directly re-

lated to midcourse guidance, but its conclusions are relevant to a mid-

course guidance study. A two-dimensional two-body analysis is made

of the sensitivity of miss distance at the destination to errors in launch

velocity. It is shown that this sensitivity varies widely for different ref-

erence trajectories, and certain desirable trajectories, called "guidance

minimum" trajectories, are defined.

Gunkel, Lascody, and Merrilees (19) determine permissible errors

in launch guidance if a Martian impact is to be achieved without the use

of midcourse corrections. They devise "preferred" reference trajec-

tories which are similar to the "guidance minimum" trajectories des-

cribed in (18). Launch accuracy requirements obtained from a two-

dimensional analysis are shown to be less stringent but generally of the

same order of magnitude as those obtained from a more elaborate three-

dimensional analysis. In order to relax the launch requirements, a single

midcourse correction is recommended.

Kierstead(20), (21)extends the sensitivity analysis of (18)to three

dimensions. He points out that the component of the vehicle's actual

motion in the ecliptic plane, which in his simplified model is also the

plane of the reference trajectory, is only loosely coupled with the com-

ponent of actual motion normal to the ecliptic plane. Thus, as a first

approximation for guidance studies, a considerable saving in computa-

tion is effected by studying the two types of motion independently. A



simple analytic expression is obtained for the out-of-plane motion; the

in-plane motion is handled numerically. The effect of midcourse cor-

rections on guidance requirements is treated for both Earth-based and

self-contained guidance systems.

Breakwell (22) attacks the problem of determining the times at which

midcourse corrections should be made in order to satisfy the criterion

that the total fuel expenditure be minimized. The analysis is statistical,

based on_a priori knowledge of the variances in the launch velocity, the

measurements, and the applied corrections. The basic mathematical

model is two-dimensional, with the reference trajectory being a Hohrnann-

type ellipse. With these assumptions Breakwell's analysis leads to the

following simple rule: After a correction has been made, wait until two

thirds of the remaining transit time has elapsed before applying the next

correction.

In a more recent paper (23) by Breakwell the analysis is extended to

several special cases which include the effect of position error in the

direction normal to the reference trajectory plane. This paper points

out that a considerable saving in fuel can be achieved if a procedure is

developed for utilizing all measurements made since launch in computing

the next correction to be applied, rather than using only those measure-

ments made subsequent to the immediately preceding correction.

(24).
Bock and Mundo, m a survey of interplanetary guidance problems,

discuss the choice of a reference trajectory and the various types of

measurement systems that may be used. Measurement systems are

classified as active electromagnetic, passive electromagnetic, or inertial.

The physical equipment associated with each system is described, and

some indication is given of performance characteristics and limitations.

Safren (25) introduces the concept of a six-component vector, con-

sisting of three components of position variation and three components

of velocity variation between actual trajectory and reference trajectory

at a specified time, to define the space vehicle's actual path. It is shown

that the matrix equation for the midcourse velocity correction is simpli-

fied if the specified time for which the elements of the six-component

vector are evaluated is the time of arrival at the destination.
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Haake and Welch (26} discuss several types of self-contained space

guidance systems. The discussion includes a summary of the linearized

guidance equations and a description of the required physical equipment.

The problem of position determination from optical sightings of celestial

angles is analyzed, and a qualitative method is proposed for the selection

of angles to be measured. The advantages and disadvantages of large-

angle optical trackers and small-field optical trackers are weighed; per-

formance specifications are proposed for the design of a small-field
tracker.

The method of adjoints has already been mentioned in connection
with the work at Ames Research Center! 13} The application of this

method to the midcourse guidance problem was suggested earlier by
(27)

Dunn and Giannetto, who point out that a considerable saving in compu-

tation time can be achieved by its use in generating the matrix coefficients

of the linearized guidance equations.

1.10 Relation of Present Study to Previous Work in the Field

The development of midcourse guidance theory has involved the

linearization of a fundamentally nonlinear set of differential equations

by means of small perturbation theory. The solution of the linearized

equations is manipulated to yield a matrix equation expressing the com_

ponents of the midcourse velocity correction vector as a time-varying

function of a set of constants which define the difference between the

vehicle's actual trajectory and its reference trajectory.

Even after the differential equations are linearized, they cannot in

general be solved analytically in closed form because the coefficients

are time-varying. The usual procedure is to perform the necessary in-

tegrations numerically on digital computers.

The problem of determining when to apply a correction has received

only cursory treatment in the literature, most investigators contenting

themselves by drawing inferences from the numerical results of their

computer programs. The single exception to this generalization is the

work of Breakwell, (22), (23)who has performed a statistical optimiza-

tion of the time of correction for several special types of reference tra-

jectories.
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The present paper extends the linear theory and develops a simple

deterministic method of computing the optimum correction time as a

function of one of the parameters which characterize the difference be-

tween actual and reference trajectories. The method is applicable to

all types of reference trajectories.

In order to provide a deeper insight into the physics of the problem,

this paper presents a complete analytic solution of the guidance equa-

tions for a mathematical model in which the reference trajectory is an

ellipse. This solution materially reduces computation time required

for preliminary guidance studies, and it may be applicable in the final

guidance mechanization for some missions.

The determination of the six independent parameters needed to

specify completely the vehicle's actual trajectory relative to the ref-

erence trajectory is the navigation problem. The parameters are eval-

uated from measurements made during the journey. Usually a redundant

number of measurements is made, and statistical theory is used in ob-

taining an estimate of the parameters.

Estimation techniques for this application are discussed in Ref-

erences (10)and (12). Each individual measurement, when properly

weighted, reduces the uncertainty in the computed values of the six

parameters. Implicit in the development of the procedures in these

references is the assumption that errors in the clock, if they exist at

all, are so small that their effect on the numerical values of the param-

eters is insignificant. This assumption is undoubtedly justified when

the measurements are made from Earth, as in (I0), or when the dura-

tion of the voyage is relatively short, as in the case of the circumlunar

trajectories considered in (12). However, for interplanetary trajec-

tories, extending over an interval of months or possibly years, neglect

of clock errors may have a significant effect.

The clock error is taken into account in Reference (3), in which

the measurements are processed not singly but in groups, each group

being related to a single nominal time of measurement. From each

group an estimate is obtained of clock error and position variation at

the nominal measurement time.
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This paper extends the procedure of (3). The maximum likelihood

method of estimation is used to compute position variation at the nominal

measurement time and also to compute the six orbital parameters from

several position variations. A simple practical technique is developed

for selecting the optical measurements to be made in a self-contained

guidance system.

The choice of the set of six parameters which define the actual tra-

jectory can have a material effect on the amount of computation required.

This paper exploits the suggestion of Safren (25) by selecting the six-

component vector consisting of the three components of position varia-

tion and the three components of velocity variation at the nominal time

of arrivai at the destination.

1.11 Synopsis

An attempt has been made in the format of this thesis to emphasize

in the main text the physical principles underlying guidance theory. De-

tailed mathematical derivations and some background material are rele-

gated to the appendices. Each chapter and each appendix opens with a

brief summary of its salient features.

The remainder of this section describes the inter-relationships

among the various chapters and appendices.

Appendix A and Appendix B provide background material. They pro-

vide some of the mathematical tools that are useful in succeeding appen-

dices.

Appendix C is parenthetical; it does not contribute to the develop-

ment of guidance theory. It presents two simple and illuminating graph-

ical constructions, not previously known to the author, which were sug-

gested by the formulation of the equations of elliptical motion in Appendix B.

Appendix D is also parenthetical. It investigates the possibility of

using elliptical cylindrical coordinates for developing the guidance theory

for elliptical reference trajectories and concludes that there is no signi-

ficant advantage in using this system.
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Appendix E develops the variant equations of motion of the space

vehicle in several coordinate systems.

Appendix F expresses the variant equations of motion and their

solution in matrix form. Some special symmetry properties of the

matrices are derived.

Appendices G and H present two distinct methods of solving the

variant equations of motion of Appendix E for the special case when the

reference trajectory is an ellipse.

Appendix I and Appendix J express the analytic solution of Ap-

pendix H as a matrix equation in several coordinate systems, the dif-

ference between the two appendices being that Appendix I treats ref-

erence trajectories for which the eccentricity is significantly greater

than zero but less than unity, while Appendix J is concerned only with

low- eccentricity reference trajectories.

Appendix K utilizes the results of Appendix I to obtain analytic

expressions for the terms in the matrices of Appendix F.

Appendices L and M formulate the basic matrix equations of mid-

course guidance, the former for FTA guidance and the latter for VTA

guidance.

Appendix N develops the method of Selecting the optimum time at

which to apply a midcourse VTA velocity correction.

Appendix O analyzes the singularities occurring in some of the

matrices of Appendix K.

Chapter 2 describes the linear approach to midcourse guidance of

a vehicle in an n-body gravitational field. It makes use of the mathe-

matical developments in Appendices E, F, L, M, and N.

Chapter 3 applies the results of Chapter 2 to missions for which

the reference trajectory is an ellipse. It utilizes the material in Ap-

pendices E, G, H, I, K, L, M, N, and O.

Chapter 4 contains a numerical example which illustrates the

theory developed in Chapters 2 and 3.

14



Appendix P is a mathematical development of the equations for the

maximum likelihood estimate of a multi-dimensional random variable.

Chapter 5 discusses linear navigation theory for both Earth-based

radio-command systems and self-contained optical systems. It utilizes

the results of the statistical theory in Appendix P.

Chapter 6 represents an attempt to utilize the novel features of this

analysis in conjunction with the best features of previous proposals in

the synthesis of a simple and effective midcourse guidance system.

Chapter 7 summarizes the salient points of the study and suggests

the areas in which additional work may be desirable.
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CHAPTER2

LINEAR GUIDANCE THEORY FOR AN

N-BODY GRAVITATIONAL FIELD

2.1 Summary

The guidance equations for both fixed-time-of-arrival guidance and

variable-time-of-arrival guidance are developed from the solution of

the linearized equations of motion of a space vehicle inan n-body

gravitational field. A method is outlined for determining the optimum

time at which to apply a midcourse correction.

2.2 Introduction

The literature reviewed in Chapter 1 contains several papers which

develop methods of computing the midcourse velocity correction as a

function of the time of correction and the parameters which define the

difference between the space vehicle's actual trajectory and its refer-

ence trajectory. The first part of the present chapter collates much of

this material, the primary sources being References (5), (9), (13),

(22), and (25).

The latter portion of the chapter extends the previously known

theory by developing a relatively simple deterministic method of speci-

fying the optimum time to apply a VTA velocity correction as a func-

tion of a single parameter of the vehicle's variant path.

2.3 Clarification of the Term "Perturbation"

In the study of guidance theory a certain amount of confusion is

caused by the fact that investigators with different backgrounds some-

times use the same technical term to describe similar but not identical

situations. In particular, this problem in semantics arises in the use

of the word perturbation.

In the development of planetary theory astronomers start with a

two-body orbit of the planet about the focus at the sun, then refine the
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computation by taking into account the gravitational effects of the other

planets. Smart* refers to these planets as !'disturbing" planets, and--

the relatively small changes they cause in the two-body Orbit are known

as "perturbations. "

A similar approach is currently used to develop desirable reference

trajectories for space vehicles on interplanetary missions. The dif-

ferences between the numerically computed trajectories, which include

such effects as earth oblateness and gravitation due to the planets, and

the corresponding two-body heliocentric trajectories are again called

"perturbations. " This usage is consistent with the older use of the

term by astronomers.

•The primary concern of the guidance analyst is the difference be-

tween the actual trajectory traversed by a space vehicle and the pre-

computed reference trajectory. This difference, due to imperfect

instrumentation and inexact guidance equations, is also referred to in

some of the literature as a "perturbation. " The mathematical tech-

nique of expressing the actual trajectory as a series expansion of

certain measured or inferred deviations between the two trajectories

is an application of "perturbation theory. " If no terms higher than

first-order are retained in the series expansion, the process is

"linear perturbation theory. "

Thus, the term perturbation describes two similar, but neverthe-

less distinct, phenomena. The older astronomical usage indicates the

small deviations from a two-body orbit due to the effect of forces that

have not previously been considered; the more recent space guidance

usage refers to deviations from a pre-computed reference trajectory caused

primarily by a change in initial conditions and to a lesser extent by a lack of

precise knowledge of the required astronomical constants.

To resolve this dilemma, "perturbation" in this analysis will be used

only in the .sense that it is used by astronomers. The differences between

the vehicle's actual trajectory and the reference trajectory will be referred

to as "variations" or "deviations. " The differential equations describing

the motion of the vehicle relative to the reference trajectory will be called

the "variant" equations of motion.

*Page 9 of (28).
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2.4 Mathematical Model

For the purposes of this analysis the space vehicle is regarded as

a small mass point moving in a three-dimensional gravitational field

dominated by thesun. The masses of the planets cause disturbances

which produce perturbations of the two-body motion of the vehicle in

the sun' s field.

All motions are referred to an origin at the center of mass of the

sun. The positions of the planets as a function of time are obtained from

an ephemeris; no simplifying assumptions are necessary, such as the

assumption that the planetary orbits are exact conic sections or that

they are exactly planar.

During the midcourse phase the vehicle's distance from any of the

planets is large enough so that the effect of planetary oblateness can be

neglected; therefore, the planets are treated as mass points.

Non-gravitational forces, such as those due to aerodynamic, elec-

tromagnetic, or solar radiation effects, are not considered.

A.lthough oblateness is neglected in the variational analysis to be

presented, the effect of earth oblateness should certainly be included

in the computation of the reference trajectory for a trip from the earth

to another planet. The reference trajectory is obtained by numerical

integration of all significant gravitational forces.

The departure of the vehicle's actual trajectory from the reference

trajectory is assumed to be small enough so that a linear variational

analysis is acceptable.

Midcourse corrections take the form of small thrust impulses

applied at several distinct times during the midcourse phase of the

journey.

2.5 Equations of Motion

In vector form, the motion of the space vehicle in the gravitational

field can be expressed by one compact equation.

_" +'_3 r= VR (2-1}
r
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where

n

R=G _ 1 r.r. )m i (2-2)
d. 3

i= 1 i ri

These equations are adapted from Page 9 of Smart• (28) They are

equivalent to Equation (13-3) of Appendix B.

The function R is known as the disturbing function. It represents

•the effect of the n disturbing planets on the vehicle's motion.

The notation used in this thesis includes the following: Under-

lining .a lower-case letter indicates that the letter represents a vector.

The same symbol used without underlining signifies the magnitude of

the vector quantity. A single dot over a symbol indicates the first

derivative with respect to time of the variable represented by the

symbol; similarly, two dots indicate the second time derivative, etc.

Time derivatives of vectors are taken with respect to inertial space

unless specified otherwise.

In Equation (2-1), r is the position vector of the vehicle on the

reference trajectory with respect to the origin at the center of the sun,

and "__r"is the acceleration of the vehicle on the reference trajectory

relative to the origin. VR is the gradient of the scalar function R.

The gravitational symbols G and/_ are defined in Section B. 2 of

Appendix B. d i is the distance of the i-th disturbing planet, whose

mass is mi, from the space vehicle, r. is the position vector of the i-thml

disturbing planet. Vectors r, r i, and d. are illustrated in Figure B 1
D _]. •

of Appendix B for the case i = i.

The component equations represented by (2-i), modified to include

the effect of earth oblateness, are the equations that are integrated

numerically (with the proper initial conditions) to obtain the vehicle's

reference trajectory•

The variant equations of motion are obtained from the variations

in the terms of (2-I) due to variations in the components of r at some

arbitrary time t. In matrix form the variant equations can be written

as follows:
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6r" = G 6r (2-3)

where
n

* T T * _ m. ,G = /_5 (3rr - r r 13) + G ---3-15(3d i_Id'T--1 d'TdiI3) (2-4)

r i= 1 d i

An asterisk over a capital letter indicates a matrix. 13 is a 3-by-3

identity matrix. The superscript T signifies the transpose of a vector

or matrix. The symbol 5 denotes the first variation of the quantity
T

immediately following it. The product r r , unlike the conventional dot

product or cross product of vector analysis, is a 3-by-3 symmetric matrix.

It is evident from (2-4) that G is a symmetric 3-by-3 matrix. It
#

is shown in Section E. 4 that G remains symmetric even when oblateness

effects are taken into consideration.

#

The elements of G are time-varying because r and d i are time-

varying. It may be noted that these elements are functions of vehicle

position on the reference trajectory and do not depend on vehicle velocity.

Once the reference trajectory has been determined, the elements of G

can be computed directly.

The derivation of (2-3) and (2-4) is given in Appendix E.

2.6 State Vector

Equation (2-3) represents three coupled second-order linear dif-

ferential equations. The solution of these equations for the components

of 5r as a function of time contains six arbitrary constants, which can
m

be regarded as the elements of a six-component column vector; such a

vector is designated a path deviation vector.

In Section F. 2 several types of path deviation vectors are defined,

and linear relations among the types are presented. The most useful

type is that which consists of the three components of position variation

and the three components of velocity variation at some specified time t k.

This particular path deviation vector is known as the state vector and

is symbolized by 5x k. The subscript k indicates that the vector refers

to conditions existing at time t k. In matrix notation,
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= .(2-5)

The state vector defines the d£fference between the vehicle's actual

trajectory and the reference trajectory in terms of its position and

_elocity variations (i. e., its "state") at time t k. For an initial con-

dition problem, t k becomes t I, the time of injection into the heliocentric

orbit; for a final condition problem, tk becomes tD, the time of arrival

at the destination.

2.7 Transition Matrix

The solution of (2-3) has the form

# *

5r =M 5r k + 5v k• -m mk Nmk --

{. ,}= Mink Nrnk 5x k

5r m is the position variation at any arbitrary time t .
• , m

of the 3-by-3 matrices Mmk and Nmk depend on t m

the characteristics of the reference trajectory.

(2-6)

The elements

and t k and also on

S
mk

By differentiating (2-6) with respect to the variable time t m, an

expression is obtained for the velocity variation 5v .--m

{ }5v m = Sink Tmk 5x k (2-7)

,
and Tmk are 3-by-3 time-varying matrices.

Equations (2-6) and (2-7) can be combined into a single equation.

5x 5x k (2-8)--m = Cmk --

where ,, ,,

Cmk :

Mmk Nrnk

_mk *Tmk

> (2-9)

The 6-by-6 matrix Cmk is known as the transition matrix; it is the

means by which the state at time t m is determined from a specified
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state at time tk. The transition matrix has some interesting mathe-

matical properties which are discussed in detail in Appendix F and are

summarized here. First, when t m = t k, it is obvious that the transition

matrix must reduce to the 6-by-6 identity matrix.

Ckk = 16 (2-10)

Secondly, the transition matrix relating 6x k

the transition matrix relating 6x m to 5x k.

* * -I
Ckm = Cmk

to 5x
--m

is the inverse of

(2-11)

The third property also is concerned with the inverse of the transi-
-1

tion matrix. It is shown in Appendix F that the elements of Cmk are
$

theelements of Cmk arranged in different order.

* T

Tmk

* -1 = (2-12)
Cmk * T

Sink

the elements of its
Thus, if the elements of C mk have been determined,

inverse are available without need for the tedious numerical computations

normally associated with inverting a 6-by-6 matrix.

Finally, despite the fact that the elements of Cmk are time-varying,

its determinant is always equal to +1.

det Cmk = + 1 (2-13)

2.8 Numerical Solution of Variant Equations of Motion

The numerical integration of (2-3) to yield a solution of the form

(2-8) is facilitated if the three second-order equations comprising (2-3)

are re-arranged as six first-order equations.

61; = 6v (2-14)

5X; = _ 6r (2-15)

In terms of the state vector,

8£ = z 8x (2-16)
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where

f* *}
O3 13*

7, = , , (2-17)

G O3

The subscript 3 on the zero and identity sub-matrices of(2-17) indicates

the order of these matrices.

Since (2-8) is the solution of (2-16), it follows that

0Cmk , ,

5x k = Z C 5x k (2-18)
_t - rn mk --

rn

For an arbitrary 5 X_k,
*

aCrn k * ,
- Z Cmk (2-19)

Ot rn
m

(2-19) represents thirty- six first-order equations which can be inte-

grated numerically from trn = t k to any other value of t . The initial con-, rn

ditions are given by the fact that Ckk is the identity matrix. As a result of,

the integration the terms of Cmk are obtained as a function of trn for the

specified value of tk, and consequently 5_rnx is determined as a function of 5x k,

2.9 Choice of Coordinate System

In choosing a coordinate system in which to carry out the numerical

integration, there are two important considerations. First, it is de-

sirable to use an inertially non-rotating system so that Coriolis effects

do not complicate the problem. Secondly, it is advisable to choose the

fixed axes such that two of them lie in the plane of the two-body motion

that would occur ideally if there were no disturbing forces, and the

third axis is perpendicular to that plane. With these axes the only

coupling between the variant motion in the plane and the variant motion

normal to the plane is due to the effect of the disturbing forces, and

this effect is usually quite small. Thus, the sixth-order system can be

sub-divided into two systems, one of fourth order and the other of

second order, with weak coupling between the two.

* * _ and
, Then in each of the four 3-by-3 matrices Mrn k, Nrnk, ink'

Trn k, the first two terms of the third row and the first two terms of

the third column will, in general, be numerically small compared to

the other five terms of the matrix, and round-off errors in the integra-

tion procedure will be materially reduced.
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The two orthogonal in-plane axes may have any desired orientation;

a convenient choice is that in which the positive x-axis is in the direction

of perihelion from the origin at the center of the sun; then the positive

y-axis is in the direction of the positive semi-latus rectum; this axis

system is described in Appendix A as the "reference trajectory stationary

coordinate system."

In the non-rotating coordinate system the thirty-six equations of

(2-19) may be re-written as follows:

8Mink •
- Sink (2-20)

8t
m

8Nmk ,
- Trek (2-21)

8t
m

aSmk • ,
- G Mink (2-22)

at m
m

8Trek * •
- G Nmk (2- 23)

8t m
m

It is evident from these equations that Mink and Smk are inter-related,

and, Nmk and, Trek are inter-related,, but, there is no coupling between

Mmk and Sink on one hand and Nmk and Tmk on the other. Therefore,

the thirty-six equations consist of two independent sets, each contain-

ing eighteen coupled equations.

2.10 State Vector at Destination

The most important state vector to the guidance analyst is 5XD,

the state vector at the nominal time of arrival at the destination. It is

useful to be able to ascertain the effect of small variations in position

and velocity at time t C, the time of a midcourse correction, on the

corresponding variations at t D. From Equation (2-8) the effect is

determined from the equation

5x D = CDC 5x C (2-24)
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Although t D is a fixed time for a specified reference trajectory, t C

can take on any value between t I and t D. It is of interest to find the,

effect of varying t C on the transition matrix CDC. If normal forward

integration is used, the thirty-six equations comprising (2-19) must be

integrated from the initial values at t = t C to the end point at t = t D for

each separate value of t C. If many values of t C are to be investigated,

the amount of computing required quickly becomes prohibitive.

By making use of (2-12) and integrating backward in time from an

"initial" condition at t = t D, the integration process need be carried out

only once. The result of the integration is a relation between CCD and

t C for the known fixed value of t D. Then CDC, the desired matrix, is

obtained from CCD for any t C by a simple re-arrangement of terms.

* * -1
CDC =CcD i• :IjMDC DC TCD

=

• / • T

SDC TDC) "ScD

* T

-NcD I
MCD T,

(2-25)

2.11 Two-Position Path Deviation Vector

The only type of path deviation vector that has been discussed thus

far is the state vector 6x. Another type of path deviation vector that is

useful in the analysis of midcourse guidance is the two-position vector,

which consists of the position variation vectors at two different times.

If the two times are t i and tj, the two-position vector is

{r}6r.
-j

The velocity variation at time t i can be written in terms of the

two-position vector.

6vi = Jij 6r. +K.. 6r.- -i 1.1 -,]

where Jij andKij are,3-by-3 matrices.

Appendix F,

Cji and _ij"

(2-26)

From the results obtained in

Ji:j and K i-J can be related to the 3-by-3 sub-matrices of
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* * -I (_..T)-I * T
Jij = - Nji Mji 13 Tij (2-27)

* _..-1 _'_T,-1
Kij. = 3I = - (i_ij } (2-28)

It is also shown in Appendix F that J.. is a symmetric matrix.
1j

Equations (2-27) and (2-28) will be used in the analysis of the

midcourse correction.

2.12 Midcourse Velocity Correction

The preceding sections describe the variant motion of a space

vehicle in a gravitational field. Once the variant motion is known, the

problem is to alter this motion by means of a midcourse correction so

that the objective of the mission can be achieved.

The means of altering the motion is a short application of thrust

from a reaction-type engine. Because the thrust application is so short

in duration relative to the time required for the space voyage, it is

treated mathematically as a thrust impulse. At the time of the correc-

tion, t C, there is a step change in vehicle velocity but no instantaneous

change in vehicle position.

Obviously, the correction causes a change in the state vector 6x k

which characterizes the variant motion. The superscripts - and + will

be used to distinguish conditions applicable before the correction from

those applicable after the correction. The change in the state vector

5x C is given by

(2-29)

whereO 3 is the three-dimensional zero vector and c is the velocity

correction vector. The three components of c are to be computed in

such a manner that three specified design conditions are satisfied.

It is apparent that a single correction cannot cause the vehicle to

return immediately to its reference trajectory, because accomplishing

this would require that six conditions be met (i. e., 5r = 03 , 5v = O3).

The three design conditions that are to be satisfied are generally as-

sociated with the vehicle's state vector when it arrives at the destination.
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Thus, the correction is intended to establish a new variant_path which

modifies 6X_D in some desired fashion. The difference between the

corrected and the original state vectors at time t D is related to the

corresponding difference in state vectors at tC by the equation

5X_D+ - 6x D- = _DC (SxC + - 5__-)

= CDC
= NDC _c

TDC J

(2-30)

In the two types of guidance system to be analyzed, all three design

conditions are related to the desired position variation at the destination,

5_rD +. Thenthe velocity correction can be found in terms of (5_D+ - 5rD').

-I +
_c = NDC (5r D - 5r D )

= KCD(Sr D - 5rD-) (2-31)

When the elements of. CCD have been computed by backward, inte-

gration, the elements of KCD are obtained from the sub-matrix NcDbY means

of(2-28). It may be noted that evaluation of KCD requires the integration of

only eighteen of the thirty- six first-order equations comprising (2-19).

2.13 Fixed-Time-of-Arrival Guidance

In fixed-time-of-arrival guidance it is stipulated that the space

vehicle arrive at the destination at the exact time specified by the

reference trajectory. Thus, the three mathematical conditions to be

satisfied by the midcourse correction are contained in the simple

equation

5rD + = 03 (2-32)

With the subscript F used to denote fixed-time-of-arrival guidance,

the equation for the correction is

_cF = _ KCD 5r D (2-33)
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The resulting velocity variation 5VD+ can be determined from (2-30),
with the aid of the relations given by (2-27) and (2,28).

5VD+ = 5VD-+ TDC c F

= 5V D-TDCKCD 5r D-

={- JDC _3} 5XD -

From (2-32) and (2-34), the new and the old state vectors at t D

related by the equation

(2-34)

are

5x D = • • 5x D- (2-35)

"JDc I3

A more detailed analysis of fixed-time-of-arrival guidance is

presented in Appendix L.

2.14 Variable-Time-of-Arrival Guidance

.In variable-time-of-arrival guidance it is required that the vehicle

reach its proper destination point relative to the destination planet, but

it is not required that the actual time of arrival coincide with the

nominal arrival time indicated by the reference trajectory. The problem

then is analogous to a simple fire-control problem, in which the motion

of the "target" (i. e., the destination planet) is completely predictable.

Instead of arriving at t = t D, the vehicle actually arrives at

t = t D + At D, the increment At D being small relative to the period of

the orbital motion. At t = t D the deviation of the vehicle's actual posi-

tion from the destination point on the reference trajectory is

÷
5r D = -v R At D (2-36)

where v R is the velocity of the vehicle relative to the destination planet

at t = t D. It is assumed in the linear theory that v R remains constant in

the time interval between t D and (t D +AtD). Clearly, at t = t D the

vehicle's position must lie on the line through the nominal destination

point and parallel to VR; this is illustrated by Figure M. 2 of Appendix M.
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The variable-time-of-arrival guidance concept requires that the

component of 5r D lying in the plane normal to v R be reduced to zero

by the midcourse correction. This component is designated 5p_ , the

miss distance vector. Since 5p can be considered a two-dimensional

vector, only two of the three conditions that can be satisfied by the

correction are contained in the equation

5p + = 0 (2-37)

The third condition, which uniquely determines 5rn÷ andAt D, is that the

magnitude of the correction be a minimum.

From Eq. (2-31), the VTA correction, designated c v, is

c = _ (-v R At D - 6r D-)--v K._D -

=c F - wAt D (2-38)

where the vector w is defined by

w = KCD v R

In Section M. 4 it is shown that the magnitude of c
mV

when

(2-39)

is a minimum

T
w c F

A b - (2-40)
T

W W

When (2-40) is substituted into (2-38), the correction becomes

(T) (T) 8., w_w_ , ww ,

c = 13 T T KCD ---v CF = - IS (2-41)

W W W W

In Section M. 5 c is proved to be perpendicular to w. Thus,
_V

Eq. (2-38) represents a vector right triangle whose hypotenuse is c F.

The direction of w is known as the "noncritical direction, " and the plane

perpendicular to w_ is the "critical plane. " --vC is the component of c F in

the critical plane.

The expected position and velocity variations at t = t D after the VTA

correction is applied may be written as
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T
v R w ,

6_rD + = _ v R At D - - KCD 5__rD
T

W W

5VD + *= 5VD- + TDcc v

Ii T I 5rD-

_ , , ww ,

= 5VD - TDC 3 T KCD
W W

(2-42)

V__RR ww )
* -- _CD 5rD-

= 5VD- - JDC _3 w Tw

The matrix relationship between 5XD + and 5x D is

(2-43)

+

5x D

v R "wT_ *

KCD
T

W W

( T ), , v R w ,

-JDc I3 T KCD
W W

O 3

5x D-

13

(2-44)

A more detailed discussion of the material in this section will be

found in Appendix M.

2.15 Critical-Plane Coordinate System

The fact that the VTA correction lies in a plane perpendicular to w

and the miss distance lies in a plane perpendicular to v R suggests the

possibility of simplifying the guidance equations by the use of a rotating

coordinate system in which one axis, the noncritical axis, is parallel

to w for any given t C, and the other two axes lie in the critical plane.

At t = t D the noncritical axis isparallel to v R, and the other two axes

lie in the plane containing 56-.

The axis system incorporating these characteristics is designated

the critical-plane coordinate system, with axes _, 7, and _. The _-_/
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plane is the critical plane, and the _-axis is the noncritical axis. The

_-axis lies along the line of nodes between the critical plane and the
reference trajectory plane.

As tC varies, the coordinate system rotates about the z-axis. The
_-axis is always in the reference trajectory plane; the z-axis is always
in the _7-_plane.

In the new coordinate system the miss distance vector is

5_D- . cos

6_TD- _ sin

(2-45)

where the subscript W indicates that the miss distance vector is expressed

in terms of its two components in the _D - _TD plane. _ is the angle be-

tween 5/3- and the positive _D-axis.

The VTA correction vector, designated c w in the critical-plane

system, is given by

c w = Y (5/3-) w (2-46)

Equation (N-30) expresses the elements of the 2-by-2 matrix Y as func-

tions of the elements of KCD and the orientation of v R.

Comparison of (2-46) with (2-41) indicates the conceptual simplicity

achieved by use of the new coordinate system.

2.16 Optimum Time of Correction

Either (2-41) or (2-46) defines the VTA velocity correction as a

function of 5/3- and t C. On an actual space mission the value of 6/3-

is estimated from measurements made during the voyage. The value of

t C can be chosen as any time after the last measurement and prior to

t D, the nominal time of arrival. The problem to be considered in this

section is the determination of the value of t C which, for the given 5/3-,

minimizes the magnitude of Cv.
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From (2-45) and (2-46),

_Cw

m

5 _D

57/D '

  {cos:Isin(2-47)

find that value of t C

of ,.

2
which minimizes cw

The magnitude of Cw,varies linearly with 5p- but in a nonlinear fashion

with, and, through Y, with t C. The procedure to be followed now is to
2

= c V for the known estimate

c_ 2 = Cw T c w = (Sp-) 2 {cos
I COSsin

2-48)

For each of several values of _, Equation (2-48) is used to compute

and plot Cv/5 p- as a function of t C. The minimum value of Cv/5 p- for

each curve occurs at the optimum correction time, t C , for the _ cot-
opt

responding to that curve. A cross-plot can then be made of t C versus
opt

@. This single design curve serves to define the optimum correction

time as a function of the angular orientation of the predicted miss dis-

tance vector.

A second cross-plot, (cv/SP-)mi n versus _, can be drawn if

desired, to indicate the magnitude of the minimum correction for a

given 5p .

Although _, as "defined, can vary from 0 ° to 360 °, only angles

between 0 ° and 180 ° need be used in the plots and the cross-plots,

since an increase of 180" in _ reverses the direction of c_vbut has no

effect on its magnitude.

2.17 Multiple Corrections

The analysis of the past few sections relates to the determination of

a single velocity correction, applied a_ t = t C, which under ideal con-

ditions enables the space vehicle to achieve the desired objective at
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t = t D without the need for any further corrections, In any practical

situation conditions are n_t ideal. The estimated position variation at

the destination, 5rD-, is inaccurate due to inaccuracies in the measure-

ments made during the voyage, and also there are inaccuracies in the

application of the computed velocity correction.

The consequence of these inaccuracies is that, after a midcourse

correction has been applied, additional measurements indicate a new

non-zero value of the vector that is to be nulled( 5r D in FTA navigation,

5p in VTA navigation), and a new correction vector can be computed.

The guidance theory that has been presented is applicable to each

individual correction in turn, irrespective of the number of corrections

that have preceded.

For VTA corrections made late in the flight, it is likely that the

optimum t C will have occurred before the time of the last measurement;

in that case the determination of t C has no practical significance.
opt

2. 18 Applicability of Linear Theory

The basic vector equation of motion of a space vehicle in a gravitational

field is (2-1), which is nonlinear. Once a reference trajectory has been

established, the general solution for the actual motion can be expressed as

an equation relating the state vector 5x m at any arbitrary time t m to the

characteristics of the reference trajectory and the components of the state

vector 5x k at some specified time t k.

6x = 6x {Xk, 5Xk, tk, tin) (2-49)--m --m

In this equation the characteristics of the reference trajectory are contained

in x k, which represents'the components of position and velocity on the ref-

erence trajectory at t k.

The components of 6x m can be written as a Taylor series expansion

in the components of 5x k. Let (6Xm) u represent the u-th component of

6x m. Also let (5Xk) i and (6Xk) j represent the i-th and j-th components of

6x k. The series" expansion for (6Xm) u is
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(SXm) u =
6 O(Xm)u

(6 xk)i

i= I 8(Xk)i

6 6 82

(Xm) u
+ 1 _.a_ 8(Xk)i 8(Xk)j (SXk)i (SXk)j + .... (2-50)

2 i= 1 j=l

The six partial derivatives in the first term on the right-hand side of (2-50)

are the elements of the u-th row of the transition matrix C mk"

In the linear theory (5 Xm) u is equated to the first term on the right-

hand side; the remaining terms on the right-hand side constitute the trunca-

tion error, the lead term of which appears on the second line of (2-50).

The magnitude of the truncation error is a function of the magnitudes of

the higher-order partial derivatives in (2-50) and also of the magnitudes

of the components of 6x k. The applicability of linear theory is determined

by the magnitude of the truncation error in relation to the permissible error

in the components of 6x D, the state vector at the destination.

The magnitudes of the components of 5x k are determined primarily by

the accuracy with which the vehicle is injected into its heliocentric orbit.

The more accurate the injection guidance system, the greater is the like-

lihood that linear theory is acceptable for midcourse guidance.

The magnitudes of the higher-order partial derivatives depend on the

reference trajectory and on the times t k and t m. For interplanetary

missions the magnitudes are relatively high in regions close to a planet,

where the nonlinear gravitational force field is strong. If times t k and

t are such that at neither time is the vehicle close to a planet, them

truncation error is materially reduced.

The fundamental state vector in midcourse guidance is 5x D. Equation

(2-50) is used to determine the components of 5x D. For missions in which

the vehicle at its point of closest approach to the destination planet is within

several planet radii of the surface of the planet, the truncation error in

computing 5x D by linear analysis may be reduced by selecting as the
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destination point for the midcourse guidance system an earlier point on
the reference trajectory, such as the point at which the reference tra-

jectory intersects the planet's sphere of influence, and then using a

separate terminal guidance scheme for final maneuvering. (The sphere

of influence is that region surrounding the surface of a planet in which

the planet itself, rather than the sun, should be used as the main body

in Equation (2-i). A mathematical derivation of the expression for the

radius of the sphere appears on Pages 234 and 235 of Plummer (29) and

also on Pages 478 and 479 of Ehricke, Vol. I! 30) Ehricke refers to the

sphere as the "activity sphere" rather than the "sphere of influence". )

A quantitative study of the truncation error has been reported by

McLean, Schmidt, and McGee! 13) In this work the FTA correction

was computed at several points on both the outbound and the inbound

legs of a circumlunar trajectory. For the outbound leg the destination

point is the perilune, at a lunar altitude of 2960 miles; the inbound des-

tination point is at vacuum perigee. It is shown that the truncation

error in position at the destination due to the neglect of second-order

variational terms in computing the midcourse velocity correction is

proportional to the square of the magnitude of the position variation

6 r at the time of the correction, the proportionality factor being a
--C

function of the range r C (in a geocentric coordinate system). The

proportionality factor is of the order of 10 -4 mi./mi. 2 near the two

ends of either leg of the reference trajectory and is smaller in the

middle, the minimum value of 10 -6 mi./mi. 2 occurring about two-

thirds of the way out on the outbound leg. Thus, if at two-thirds of

the way out, the position variation is i0,000 miles and a velocity cor-

rection is applied in accordance with linear theory, the position varia-

tion at perilune due to truncation error is approximately 100 miles.

The author is not aware of any similar quantitative study of truncation

error for interplanetary trajectories.
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CHAPTER 3

LINEAR GUIDANCE THEORY FOR ELLIPTICAL

REFERENCE TRAJECTORIES

3.1 Summary

For the special case of two-body motion the variant motion in the

plane of the reference trajectory is uncoupled from the variant motion

normal to that plane. Therefore, with the proper choice of a coordinate

system, each of the 3-by-3 matrices defined in the linear theory of

Chapter 2 contains four elements which are identically zero for all

values of time.

Two different methods are presented for solving analytically the

variant equations of motion when the reference trajectory is an ellipse.

The solution is used to Obtain analytic expressions for the five non-

zero elements of each of the 3-by-3 matrices of Chapter 2. Singulari-

ties occurring in some of the matrix elements are discussed.

3.2 Introduction

The linear theory of Chapter 2 enables the solution of the variant

equations of motion to be expressed by the simple matrix equation

(2-8). However, the time-varying elements of the transition matrix

_mk cannot be found analytically; numerical integration is required

to evaluate the elements. In this chapter an analytic solution is ob-

tained by imposing a limitation on the mathematical model of Chapter 2.

The new limitation is the assumption that the perturbations due to the

disturbing planets are neglibible and therefore the resulting motion of

the vehicle is two-body motion in the sun|s gravitational field. This

two-body approximation is deemed to be reasonably realistic for the

midcourse phase of an interplanetary flight, when the vehicleWs distance

from the nearest planet is relatively large.

Utilization of the two-body assumption in the guidance analysis does

not require that the same assumption be used in obtaining the reference

trajectory. The reference trajectory is still to be obtained accurately

by the numerical integration of the basic vector equation (2-1). The

midcourse phase of the trajectory is then approximated by a conic sec-

tion with one focus at the center of the sun, and the orbital elements
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of this conic section are computed for use in the guidance analysis.
However, variations measured or inferred from the analysis are vari-

ations of the actual trajectory from the numerically computed reference

trajectory, not variations from the conic approximation. Thus, the pri-

mary effects of the disturbing forces are included in the analysis, but

the changes in the disturbing forces due to the fact that the vehicle is

not on the reference trajectory are ignored.

The assumption of two-body motion gives rise to two interesting

conditions, each of which can be used to obtain an analytic solution of

the variant equations of motion. The first condition is that the variant

motion in the plane of the reference trajectory is independent of the

variant motion normal to that plane. Because of this condition, the

sixth-order system represented by Equation (2-3) can be replaced by

two uncoupled systems, one of fourth order and one of second order,

and both systems can be integrated analytically. The second condition

is that, inasmuch as the reference trajectory is approximated by a

conic section, the actual trajectory, which differs from the reference

trajectory only due to a change in initial conditions, can also be approxi-

mated by a conic section, and the relation between the two trajectories
can be expressed in terms of the variations of six orbital elements.

The first condition was recognized by Kierstead, (20), (21) who

solved the second-order system describing the out-of-plane motion but

apparently made no attempt to obtain a similar solution for the fourth-

order system describing in-plane motion. The second condition was

utilized by Battin in Appendix G of (5) in developing analytic expressions

for an elaborate set of matrices which can be combined to yield a solu-
tion for the variant motion without the use of integration. However, the
author is not aware of any previously published literature which carries

out the two,body analysis, as in the succeeding sections of this chapter,

to derive relatively straightforward analytic expressions for all the

elements in the basic matrices of Chapter 2.

In performing the detailed analysis, only elliptical reference tra-

jectories are considered, since these are deemed to be the only conic

sections of practical importance in the midcourse phase of interplanetary
transfers.
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3.3 Coordinate Systems

The problem of selecting a coordinate system has already been dis-

cussed in Section 2.9 in connection with the numerical integration of the

equations of the many-body problem. It was pointed out in that section

that there is an advantage to selecting a system in which two of the three

axes lie in the reference trajectory plane. This advantage is even more

pronounced in the analysis of two-body motion, for now the uncoupling

between in-plane and out-of-plane motion is complete, and consequently

the two types of motion may be treated independently.

Appendix A describes three reference trajectory coordinate systems,

each of which has been found to be useful in one phase of the development.

The three are the stationary system with axes x y z, the local vertical

system with axes r s z, and the flight path system with axes p q z. In all

three the origin is at the center of the sun, and all have the same z-axis.

In the x y z system the x-axis is in the direction of perihelion of the ref-

eren.ce trajectory; the axes are non-rotating. In the r s z system the r-

axis is in the direction of the vehicle's position vector on the reference

trajectory; the r and s axes are rotating in the reference trajectory plane

with angular velocity f, where f is the true anomaly (the angle between

the position vector on the reference trajectory and the x-axis). In the

p q z system the q-axis is parallel to the instantaneous velocity vector

of the vehicle in its motion on the reference trajectory; the p and q axes

rotate with angular velocity g, where g is the angle between the velocity

vector and the y-axis. It may be noted that when the vehicle is at peri-

helion of its reference trajectory all three coordinate systems instan-

taneously coincide.

The x y z system is most appropriate when the problem is to be

solved numerically, as in Chapter 2. The r s z system is used to ob-

tain an analytic solution of the variant equations of motion of the two-

body problem. The p q z system yields the simplest form for the ana-

lytic expressions for the elements of the basic matrices of Chapter 2.
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A fourth coordinate system that might at first'glance appear useful

is the elliptical cylindrical coordinate system. There are some striking

similarities between this system and the p q z system. Appendix D is an

analysis of the elliptical system and its applicability to the guidance

problem. It is concluded that this curvilinear coordinate system offers

no significant advantages over the three rectilinear systems that have

already been discussed.

3.4 Equations of Motion

For the two-body problem, the vector equation of motion, (2-1),

simplifies to

"_r"+ -_ _r = 0 3 (3-I)
r

where 0 3 is the three-dimensional zero vector. If (3-1) is regarded as

describing motionalong the reference trajectory, the component equa-

tions in the x y z coordinate system are

{Xy (0)0 (3-2)

where

2 y2 (r 2 2 2 2 2x + = cos f+ r sin f) = r (3-3)

In the r s z coordinate system the component equations are

I _ 1

r" r

rf+2rf

-_ = (3-4)
r

No z-axis equation is required because the coordinate systems have

been defined in such a mm_mer that the motion is confined to the plane

perpendicular to the z-axis; i.e., z is identically zero for all values

of t.
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Equations (3-4) can be integrated directly.

the lower equation yields

A single integration of

2
r f=h (3-5}

The constant h is the orbital angular momentum of the space vehicle

per unit mass. (3-5) is used in integrating the upper equation of (3-4).
The result is

h21_ (3-6)
r = 1 + e cos f

(3-5) and (3-6) constitute the familiar solution of two-body motion.

(3-6) is the general equation of a conic section with the origin at one

focus and the line f = 0 coinciding with the major axis of the conic.

These relations, as well as many more that are useful in celestial

mechanics, are discussed in Appendix B. Appendix C, which has no

direct bearing on the main subject matter of this thesis, describes two

interesting graphical constructions which evolved from the formulations

for elliptical motion in Appendix B.

The vector form of the variant equations of motion for the two-body

problem, corresponding to (2-3) and (2-4) for the n-body problem, is

5r" = G 5r (3-7)

with

"_ T T *
G = _-- (3r r - r r 13) (3-8}5

r

Equation (3-7}, like (3-1), is most easily integrated when the component

equations are expressed in the r s z coordinate system. In this system
$

G is a diagonal matrix.
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/2 0 0 _

r

0 -1 0

0 0 -1
\ /

(3-9)

The component equations are simplified if 5f is used in place of 5s.

5s = r 5f (3-10)

Then the three equations to be integrated are

_2 5.r- 2rf 51_ . =

2f6r+fGr+ rSf'+ 2r5 -_.
r"

25r

(3-ii)

The detailed derivation of (3-11) is presented in Appendix E and Section

G. 2 of Appendix G.

The uncoupling effect mentioned previously is brought out by (3-11).

The first two equations, involving the dependent variables 5r and 5f, are

not coupled to the third equation, in which 5z is the only dependent variable.

3.5 Variant Motion Normal to the Reference Traject0r _, Plane

The z-axis equation of (3-11) may be written as

5_" + _5 z = 0 (3-12)
r

Comparison of (3-12) with (3-2) indicates that x and y are independent

solutions for 5 z.
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5z _- K 1 x+ K 2 y (3-13)

_- r (K l cos f + K 2 sin f) (3-14)

K22) I/2 ( -I KI )_- (KI 2 + r sin f + tan K--2 (3-15)

where K l and K 2 are arbitrary constants.

This simple solution for the variant motion normal to the reference

trajectory plane is independent of the nature of the two-body reference

trajectory; the reference trajectory may be elliptical, parabolic, or

hyperbolic.

3.6 Integration of the Variant Equations for Elliptical Reference

Trajectories

The integration of the first two equations of (3-11) is carried out

in Sections G.3 and G.4. The two equations constitute a fourth-order

system in 5 r and 5 f. The first of the four independent solutions can

be obtained directly by virtue of the fact that 5 f does not appear ex-

plicitly in either equation. It is apparent that both equations are satis-

fied if 5 f is a constant and 5 r is identically zero. Thus, the first solu-

tion is

5r _- 0 5f = k I (3-16)

where k 1 is an arbitrary constant.

If the independent variable in the two equations is changed from

the time t to the true anomaly f and the two equations are combined,

the following third-order equation is obtained:

[(1 + e cos f) F- (3 e sin f)] (F 2 + 1) 5r = 0 (3-17)
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where F represents the operator d/df and e is the eccentricity of the

reference trajectory. Two more solutions for 6 r follow immediately

from

(F 2 + i) 5 r = 0 (3-18)

These are

6 r = k 2 cos f (3-19)

5 r = k 3 sin f (3-20)

The corresponding solutions for 6 f are

k 2
6 f - (2 + e cos f) sin f (3-21)

a (1 - e2)

k 3
6f=

a (1 - e 2)
(2 + e cos f)cos f (3-22)

To obtain the fourth solution, the new variable x is introduced, where

x = (F2+ 1) 5r (3-23)

Then, Equation (3-17) becomes

(1 + e cos f) d__x _ (3 e sin f) x = 0 (3-24)
df

After the variables x and f are separated, the equation is integrated,

with the result

X _

C

(1 + e cos f)3
(3-25)

C is another integration constant. The method of variation of para-

meters is used to solve (3-25) for the fourth solution of 6 r. After

considerable mathematical manipulation, all of which is explained in
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Section G.4, the solution is

6r_k 4 [_ 3eMsinf 1 _]2 (i -e2) 3/2 + 1 +e cos f

where M is the mean anomaly. For this value of 5 r, 6 f is

(3-26)

3 k 4

5 f = - 5/2 M (i + e cos f)2 (3-27)

2 a (1- e 2)

Section G.5 presents a method of solution of the z-axis equation of

(3-11) which is less direct than that given in Section 3.5. The solution

in G.5 involves the substitution of the eccentric anomaly E for the time

t as the independent variable. The differential equation becomes

[(i-e cos E) j2 _ (e sin E) J + I] 5z = 0 (3-28)

where J signifies the operator d/dE.

6 z are

The two independent solutions for

k5 sin f (3-29)

6z = e2)1/2 sin E = k 5 1 + e cos f(1-

k6 cos f

6z = 2) (cos E-e) = k 6 1 + e cos f (3-30)(1 -e

Since the radius r is proportional to l/(l+ e cos f), it is apparent that

the second forms of (3-29) and (3-30) are consistent with the solution

of (3-14).

The results of this section may be combined to give the complete

homogeneous solution of the equations of (3-11), the dependent variables

5 r, 5 s, and 6 z being expressed in terms of the anomalies f and M.

5r = k 2 cos f+k 3 sin f

' +k4 I- 3e Msinf2 (1 - e2) 3/2
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6S =

k I a (1 - e 2)

1 + e cos f

k 2 (2 +e cos f) sin f

1 + e cos f

+
k 3 (2 +e cos f) cos f 3 k 4 M (1 + e cos f)

1 + e cos f 2 (1- e2) 3/2

(3-32)

k 5 sin f k 6 cos f
6 z = +

1 + e cos f 1 + e cos f
(3-33)

3.7 Solution by Variation of the Orbital Elements of the Elliptical

Reference Trajectory

The past few sections have presented a method of determining

position along the actual trajectory by formulating and then integrating

the differential equations of the variant motion. A second method, to be

presented in this section, follows a different procedure. The basic vector

equation of two-body motion, (3-1), is integrated, the result being the

familiar conic section. The solution for position on the actual trajectory

is obtained by finding the effect on position at any given time of small

variations in each of the six orbital elements characterizing the basic

conic section. Whereas the first method involves taking variations and

then integrating, the second method involves integrating and then taking

variations. A detailed analysis of the second method appears in Appendix H.

The fundamental premise of the second method is that the actual

trajectory, like the reference trajectory, is an ellipse and that the two

ellipses lie close to each other in space. To distinguish quantities on

the actual trajectory from the corresponding quantities on the reference

trajectory, a prime will be added to each symbol referring to the actual

trajectory. Thus, the position variation 5 r is

6 r = r' - r (3-34)
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The six orbital elements whose variations are to be investigated are

the semi-major axis length a, the eccentricity e, the longitude of the as-

cending node _, the inclination i, the latitude of perihelion w, and the time

of perihelion passage to. These elements are discussed in Section B.6.

Later the longitude of perihelion # is substituted for w, and the mean

anomaly M o at epoch is substituted for t o.

= G + w (3-35)

M o= - nt o (3- 36)

where n is the mean angular motion, i.e., the mean angular velocity of

the space vehicle in its elliptical orbit about the sun.

The basic analysis is applicable to all elliptical reference trajec-

tories for which the eccentricity is not very close to either zero or one.

As shown in Figure H. 1, the orientation of the actual trajectory with

respect to the reference trajectory is defined by the three angles 5 _,

6 i, and 5 w. The angles 5 _ and 5 w need not be small, but their sum, which

is equal to 5 ¢, is a small angle. The angle 5 i is always small. The vari-

ation in true anomaly, 5 f, although time-varying, is also small.

The components of r' along the r, s, and z axes are designated r'- r'

r' s, and r' z, respectively. The components of r along these axes are,

by definition, r, 0, and 0. From Figure H. 1, the effect of variations in

the orientation angles on the components of 5 r are

5r=r' -r
r

= r' [cos (f' + 5w) cos (f- 5 _)

+ sin (f' + 6w) cos 5i sin (f- 5_)]- r

= r' cos (S f+ 5¢) - r

= r' - r (3-37)
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•6 s = r' - 0
S

= r'[- cos (f' + 6w) sin(f- 8_)

+ sin (f' + 6w) cos 6icos (f- 6_)]

= r' sin (6f+ 6¢)

= r (6f+6_) (3- 38)

6z=r' -0
z

= r' sin (f'_ 5oo) sin 6i

= r 6i sin (f- 6_) (3-39)

In these relations the usual small-angle approximations have been applied

to 6 ¢, 6 i, and 6 f. Also, second-order terms in the small variational

quantities have been neglected, the small quantities consisting of (6r/r)

in addition to the angles just cited.

Comparison of (3-39) with (3-15) indicates that

2 1/2
(K12+ K 2 ) = 6i (3-40)

K 1
tan -1 -- =- 5_ (3-41)

K 2

The analysis presented below for determining the effects of 6 a,

6 e, and 6 t o on 6r differs from the basic presentation in Appendix H in

that the former is applicable only to ellipses of "moderate" eccentricity

(the only practical ones for interplanetary transfers to neighboring

planets), while the latter can be used in the circular or nearly circular

case as well as in the case of moderate eccentricity. The restriction

to moderate eccentricity simplifies the analysis considerably.
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For ellipses of moderate eccentricity, linear theory requires that

the angular variations 5 E, 5 M, and 5 Mo, like 5 f, be small angles.

The analysis proceeds as follows:

1. 5 r is expressed as a function of 5 a, 5 e, and 5 f.

2. 5 r is expressed as a function of 5 a, 5 e, and 5 E.

3. By equating the two expressions for 5 r, a relation is found

between 5 f and 5 E.

4. Kepler's equation and Kepler's third law are used to find 5 E

as a function of 5 a, 5 e, and 5 t o.

5. The expression for 5 E is substituted into the expressions for

5 r and 5 f to obtain final relations for 5 r and 5 s in terms of variations

in the orbital elements.

From the basic equation

a (1 - e 2)

r l+e cosf (3-42}

5 r becomes

5r=r'-r

(a+ 5a) [1- (e +Se) 2] a(1-e 2)

1 + (e + 5e) cos(f+Sf) 1 + e cos f

E(1 -e 2 - 2 e 5e) + (1-e 2) 5a 2 ]a 1-e j= a[_+ecos f-: e sinfSf+cosfSe - 1 + e cos f

(equation continued on next page)
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( f-

a _ [(1-e 2- 2 e 6e) + (1-e 2)= 1 + e cos f
\

° [ 1 +esinfSf- c°sfSe]' 1 +e cos f - (l-e2)}

a [ (l_e2) 5___a- (e+ c°s f+e1 + e cos f a 1 + e cos f )
(1-e 2) e sin f 5f]

+ cos f J

6e

(3-43)

The expression for r in terms of E is

r = a (1-e cos E)

Then 5 r is

5r= (a + 5a)[l- (e + 5e) cos (E + &E)]

:- a (1-e cos E)

= (a + 5 a) (1 - e cos E + e sin E 5 E - cos E 6 e)

- a (1-e cos E)

= a [(1-e cos E) Y--5_ - cos E 6e + e sin E 6El
a

a [ (1-e 2) 5___ai + e cos f a

+ (1 e2) 1/2 ]- e sin f 5E

- (cos f+ e) 5e

(3-44)

(3-45)

When (3-43) is equated to (3-45),

l+ecosf [(6f= e+
(1-e 2) e sinf

cos f + e

1 + e cos f

e2) 1/2 ]+ (i- e sin f 6E

sin f i + e cos f

l-e 2 6e + e2)i/_ 5E(I-

- cos f- e )
6e

(3-46)
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Two expressions for the mean anomaly can be obtained from the

definition of mean anomaly and from Kepler's equation.

M = n (t- to ) = E - e sin E (3-47)

The variation in M is

6M = (n+Sn) (t- t o- 5to) - n (t- t o )

= (E +SE) - (e +Se) sin (E + 6E)

-E+esinE (3-48)

(3-48) is solved for 5 E.

1
5E = 1-e cos E [(t - t o ) 6n- n6t o +sin E 5e] (3-49)

6 n can be expressed in terms of 5 a by means of Kepler's third law of

planetary motion.

2 3
= n a (3-50)

Since _ is invariant,

= = a 3 a 25_ 0 2 n 5n + 3n 2 5a

3 5a
6n=---n--

2 a

(3-51)

(3-52)

Then 5 E becomes

5E=
1 + e cos f

2
1-e

M 5__a.aa- n 5to)

sin f
+

(1 -e2) 1/2 '

_e

(3-53)
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This expression is substituted into (3-45) and (3-46.) to yield

equations for 5 r and 5 s in terms of (5 a/a), n 5 to, 5 e, and 5_, with

the time-varying quantities being f and M. The parameters repre-

senting the variations of the orbital elements have been arranged

such that they are all non-dimensional. The final equations for the

components of 5 r are

I I-e25 r = a 1 + e cos f _ 3_Mes_ f_ ) 6_A 
2 (1 - e2) 1/2 a

e sinf

i/2
(1-e 2)

n 5t o- cos fSel
(3-54)

SS = a
_ 3M (i + e cos f)

2 (1 - e2) 1/2

6a ( 1 + e cos f)
n6t

a 1/2 o
(i - e 2)

2 + e cos f)+ 1 + e cos f
(1 - e 2) 5 ¢1

sinfSe+ (1 + e cos f)
(3-55)

J

5 z a (1 - e 2)= (sin f 5i cos 5_- cos f 5i sin 5 _) (3-56)
1 + e cos f

It is shown in Section H.7 that the six constants of integration in

(3-31), (3-32), and (3-33) can be written in terms of the variations in

the orbital elements, and therefore the two methods of solution of the

problem of the variant motion of the space vehicle are mathematically

equivalent. The conclusion that can be drawn is that, in the solution for

the deviation of the actual trajectory from the reference trajectory

caused by small variations in initial conditions, the processes of integra-

tion and taking of first variations are commutative.
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3.8 Variation in Position, Velocity, and Acceleration

The time-varying elements of Equations (3-54), (3-55}, and (3-56)

can be expressed in terms of the components of position and velocity

along the reference trajectory by the use of the standard relations de-

veloped in Appendix B. The components of velocity variation 8 v are

obtained by differentiating 8 r, and the components of variation in ac-
I

celeration 8 a are obtained by differentiating 8v. All of these results

are contained in the following three vector equations, the details of

which are developed in Appendix I.

3 Uq) 6 a v u 8 M °6r= rUr- _ vt _ +__q

+( Y u s au ) 8e+ru2
--S_X

1-e

+ r sin (f- 6_) 6iu
--Z

(3-57)

v Uq 3 ar_ ar Ur) u '6M
-r o

4-
'- v sin fu +v cos fu \--p s --s )-6e - v u1 - e 2 --P

+vcos (g- 6_) 8iu
--Z

(3-58)

_a = --_ 2r- 3v r
r

3 tu]6at) u v s -s -g-

+ nl (2 v r_ru - VsUs) 6M °

- 2 a cos f u r + Y
1 - e 2 + asinf u s

- ru s 6_- r sin (f-6i2) 8iu z

,%.

9

_e

(3-59)
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In these equations u represents a unit vector, with the appended

subscript indicating its direction, v r and v s are the r-direction and s _

direction components of the orbital velocity vector v. a is the radial
-- r

component of acceleration; it is equal to the magnitude of the accelera-
e,

tion vector r.

a =-- (3-60)
r 2

r

Equation (3-61) is a composite matrix equation presenting the com-

ponents of 5r, 5_v, and 5a in the r s z coordinate system. The symbols

v x and Vy, introduced in this equation, are the components of v in the x

and y directions, respectively.

A comparison of the last three rows, of (3-61) with the first three

rows indicates that (3-7), in conjunction with (3-9), is satisfied by the

solution obtained for 5 r.

It may be noted that, of the fifty-four terms in the 9-by-6 matrix

of (3-61), twenty-seven, half of the total number, are equalto zero.

3.9 Discussion of Effects of Variations in Orbital Elements

Some insight into the geometric and dynamic effects of variations

of the orbital elements on the position and velocity of the space vehicle

may be gained from Equations (3-57), (3-58), and (3-61), and Figures

3.1 to 3.5. The lack of coupling between the variant motion in the ref-

erence trajectory plane and the variant motion normal to that plane is

indicated by the equations; position and velocity in the plane are affected

only by variations in the elements a, M o, e, and _, while position and

velocity in the z direction are affected only by variations of the other

two elements, _ and i.

In the following paragraphs the effect of a positive variation in each

of the orbital elements will be investigated. Because of the linearity

assumption, negative variations of the elements produce effects that are

exactly opposite to their positive counterparts. (In this context, the out-

of-plane "elements" are 5 i cos 6 _ and 6 i sin 5 _.)
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The effect of a positive (5 a/a) is illustrated in Figure 3.1. There

are two distinct components, one geometric and the other dynamic in

origin. The geometric effect is manifested by a change in size, but not

in shape, of the elliptical trajectory. All linear dimensions on the actual

trajectory are in the ratio 1 + (5 a/a) to the corresponding dimensions on

the reference trajectory. The two trajectories are confocal rather than

concentric, since the attractive focus (i.e., the center of the sun) is the

only point directly related to the reference orbit that cannot be affected

by any variations.

The geometric effect on position can be derived very simply from

Equation (3-44}. Since e and E are independent of 5 a,

5r 5a
- (3-62)

r a

Then the ratio of the magnitude of r' to the magnitude of r is

r' _ r + 5r _ 1 +__Sr = 1 +_6a (3-63)
r r r a

The increased size of the elliptical trajectory reduces the magnitude

of the velocity vector.

2 (2 1v =_ _ --_

:__(l+ecosE_a e cos E

This is readily seen from the vis viva integral.

)
)

(3-64)

(3-65)

Since _ is invariant and e and E are independent of 5 a,

V

_ a _ a

a' a+Sa (3-66)

1 + 2 5___v. 1
v 6a

1+_
a

8a

a
(3-67)

6v 1 5a

v 2 a
(3-68)
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Figure 3.1 Effect of 6a, Variation in Length of Semi-Major Axis
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The dynamic effect of (6 a/a) is a consequence of Kepler's third

law of planetary motion, which states that the squares of the periods

of the planetary orbits are proportional to the cubes of their mean

distances from the sun. Since the period P is inversely proportional

•to the mean angular motion n, the following expression for 6 P is ob-

tained from (3- 52):

5P 5n 3 5a

p n 2 a
(3-69)

Thus, increasing the length of the semi-major axis increases the

period of the.elliptical motion and consequently causes a retardatign

in position. From (3-57), the position change is

3 5a u = -vt 5P
--_ vtT -q -_- u (3-70)-q

Unlike all the other variational effects, which are either periodic in

time or constant, the dynamic effect of (5 a/a} increases in magnitude

continuously with elapsed time. If the space vehicle makes several

circuits of the sun, the total change in position between two times that

are exactly one period of the reference trajectory apart is

5r (t+ P) - 5r (t) = - v 5P u
_ _ --q

=- 3_r v 5a u (3-71)
n a --q

This position retardation is parallel to the local reference velocity

vector v.

The velocity change due to the dynamic effect is

3 6 a -- u (3-72)-- a t-- u =- a t 5P
2 r a -r r p -r

Since a r is a negative quantity, a positive (5 a]a) causes a change in v

in the positive r direction. This effect can be seen qualitatively in

Figure 3.1. The position retardation due to (5 a/a) causes v' to be

rotated clockwise relative to v, thereby producing a positive component

of 5 v in the r direction. The velocity equation corresponding to (3-71) is
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5v (t+P) - 6v it) = - a r 5Pu r

ar 5a 3_r_ 5a
= - 3 _r u = u (3-73)

n a -r n r 2 a -r

It may be noted that the geometric component of (5 a/a) changes the

magnitude of r and v but has no effect on their directions, while the

dynamic component causes a position change in the direction of the

reference velocity vector and a velocity change in the direction of the

reference acceleration vector, which is also the direction of the ref-

erence position vector.

Figure 3.2 indicates the effect of a positive variation of mean

anomaly at epoch. The actual trajectory coincides with the reference

trajectory. The position and velocity of the vehicle on the actual tra-

jectory at time t are those that it would have at a slightly later time

if it were on the reference trajectory.

The mathematical explanation of this effect is straightforward.

From (3- 36), since n is independent of 5 Mo,

8t
o 1

0 M ° n
(3-74)

Thus, when M ° is the only orbital element of those appearing in (3-57}

and (3-58) to experience a variation, the variations in position and

velocity are

Or

-- 6M =v_ 5M u = - vSt u
0 M o n o -q o -q

O

(3-75)

OV a
-- r

5M =-- 5M u = - ar 5toU q_ Mo o n o --q
(3-76)

The positive 5 M ° signifies that at epoch (i.e., at t = 0) the actual

mean anomaly is slightly more positive than the reference mean anom-

aly. Correspondingly, the vehicle actually passes perihelion (M = 0)

at a time slightly earlier than the time t o at which it would have passed
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Figure 3.2 Effect of 5M o, Variation in Mean Anomaly at Epoch
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if it were on the reference trajectory. Therefore to', the actual time

of perihelion passage, is less positive than t o, and 5 to, which is equal

to (t o' - to), is negative, as indicated in (3-74). Since the time interval

between the vehicle's actual state and its reference state is shown by

(3-75) and (3-76) to remain fixed at 5 t o for all values of elapsed time,

the actual position and velocity vectors may be related to the reference

vectors as follows:

r' (t) =r (t - 5t o) (3-77)

_v' (t) -_v (t- 5t o) (3-78)
.

The effect of an increase in eccentricity, shown in Figure 3.3, is

somewhat more complex than the effect of variations of any of the other

elements. The elliptical trajectory undergoes both a translation and a

distortion. The translation is a shift parallel to the major axis in the

direction of aphelion, with the attractive focus remaining fixed. This is

indicated by the term - a 6 e u in (3-57). Geometrically, it can be ex-
--X

plained by the fact that the perihelion distance is changed from a (1 - e)

to a(1 - e - 5e) and the aphelion distance is changed from a(l + e) to

a(l + e + 5 e); thus, both perihelion and aphelion are shifted an amount

a 6 e in the negative x direction.

The distortion effect produces the reduction in the length of the

ordinates of the ellipse that is required by the increase in eccentricity.

The first term in the coefficient of 5 e in (3-57) is the mathematical ex-

pression for the distortion. Its physical meaning is clarified if it is

expanded as follows:

u + 2 Uy ..... ,
1 -e 2 1 - e -x 1 - e

Since y = 0 at both perihelion and aphelion, neither point is affected by

the distortion. Because y sin f is non-negative, all other points on the

reference trajectory are displaced in the negative x direction; this dis-

placement is in addition to the fixed shift that has already been noted.

The y coordinate is increased in magnitude on the perihelion side of the

attractive focus and decreased in magnitude on the aphelion side.
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The computation of the change in the length of the semi-minor axis b

can be used to illustrate the way in which (3-79) provides the required

distortion. The eccentric anomaly E corresponding to the positive semi-

minor axis is 90°. The length of the semi-minor axis is

2)1/2b = a (1 - e (3-80)

The variation of b due to a variation in e can be obtained quite simply

from (3-80) without recourse to (3-79).

ae
_b 5e 5e (3-81)

_e ' (1 - e2) 1/2

The same result can be derived from (3-79) by first determining the

variation of any value of y due to 5 e and making use of the relations in

Section B.8.

_Y 5e = y cos f 5e = a sinE (cos E - e) 5e (3-82)
2 1/2

Oe 1 - e (1 - e 2} (1 - e cos E}

The variation in b is then obtained by substituting E = 90 ° into (3-82}.

ae0b 5 e 5 e (3-83)

_e (1 - e2) 1/2

As a final note on the effect of 5 e on 5 r, the coefficient of 5 e in

(3-57) will be derived directly from the relations for x and y in terms

of E given in Section B.8. On the reference trajectory,

r=xu +yu
- -x -y

1/2
= a(cos E - e) u + a (1 - e 2} sine u (3-.84)

--x --y
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The variation in r due to 6e is

_r

_Se =a(- sin E 6E - 5e) ua e -x

I( /2 e sin E el

+ a 1 - e2) 1 cosE 5E - 1/2 5 u--y
(1 - e 2)

(3-85)

Equation (3-47} is used to relate 5 E to 5 e. Since t is the independent

variable and n and t o are unaffected by 5 e, the variation in M is zero.

6M = 0 = (1 - e cos E) 6E - sinE 5e (3-86)

sin E 5 e (3-87}5E= 1 - e cos E

(3-87) is substituted into (3-85). After simplification the result is

0r E( )_-- 5e = - a+YSinf__ +ycos f
8e 1 - e 2 Ux 1 - e 2

_e

=/ Y u s - aUx)Se (3-88)1- e 2

The coefficient of 5 e in (3-88) is identical with the coefficient of 5 e in

(3-57).

Equation (3-58) indicates that the velocity change due to 5 e can be

written as the vector sum of two components, one in the s direction and

the other in the p direction. The s, or transverse, component can be

explained in terms of Kepler's second and third laws of planetary motion.

Since both the reference trajectory and the actual trajectory have the

same major axis length, according to the third law both have the same

period. From the second law, the "swept area" law, which can be deduced

from (3-5), the rate at which the position vector sweeps through the area

of an elliptical trajectory is constant. The constant is not the same for
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the reference and actual trajectories because, although they have the

same period, the area of the former is larger than the area of the latter.

Figure 3.3 indicates that the percentage of the total area of the

actual trajectory that is on the perihelion side of the attractive focus

is smaller than the percentage of the total area of the reference tra-

jectory on the perihelion side. Therefore, r' must rotate more rapidly

than r on the perihelion side, and, since the periods are equal, r' must

rotate less rapidly than r on the aphelion side. This line of reasoning

is borne out by the fact that the time-varying part of the coefficient of

u s 6 e in (3-58) is v s cos f. The direction of the rotation of_r is by

definition the s direction. Since v s is always positive, the sign of the

coefficient of u 5 e is the sign of cos f; consequently, 5 v has a com-
_S

ponent in the s direction that is positive when cos f is positive (i.e., on

the perihelion side of the attractive focus) and negative when cos f is

negative (i.e., on the aphelion side of the attractive focus).

Since the y component of 5 r is zero when sin f is zero, vehicles

on the actual and reference trajectories pass through their respective

perihelions at the same time, and they also pass through their respec-

tive aphelions at the same time. In the journey from perihelion to

aphelion the actual position vector leads the reference position vector

(that is, f'>f), while in the journey from aphelion to perihelion the actual

position vector lags the reference position vector (f'< f). The lead of

r' relative to r in motion from perihelion toward aphelion causes v' to

be rotated toward the attractive focus (i. e., in the negative p direction)

relative to v. Conversely, the lag of r' relative to r in motion from aphelion

toward perihelion causes a rotation of the velocity vector in the positive

p direction. The rotation of the v vector is one of the two sources of

the p component of velocity variation due to 6 e.

The other source of the p component of velocity variation due to

5 e is the variation in the rate of change of the magnitude of r. In flight

from perihelion to aphelion, for which the time duration is one half the

period on both trajectories, the magnitude of r increases from a (1 - e)

to a (1 + e), the net change being 2 a e; in a similar flight the net change

in the magnitude of_r' is 2 a (e + 6 e). Since the change in the magnitude
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6r = r'- r = variation in position
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Figure 3.3 Effect of 6e, Variation in Eccentricity

63



of r' is more positive than the change in the magnitude of r and the

same time is required for both journeys, the average value of 2' is

more positive than the average value of 2. On the trip from aphelion

to perihelion the reverse is true; the average value of 2' is more

negative than the average value of ÷.

The effect of the rotation of v and the effect of the variation in

tend to balance each other. On the basis of the qualitative discussion

that has been presented, it is not possible to assign any relative

weighting to the two factors. A mathematical analysis will now be

made in order to relate the two quantitatively. The effect of both

factors on 5 Vr, the component of 5 v in the radial direction, will be

determined.

From Figure 3.3 the effect of the rotation of v on 5 v is
m r

5v r = - v cos 7sin 5f = - v s 5f (3-89)

The effect of the variation in _ is

5v r = r' cos 5f- I- = 1-' - r = 5r (3-90)

From Equation (B-65),

naesinf
r -

(1 - e2) 1/2 (3-91)

The variation of _" is
na

5r=

(1 - e2) 3/2

[sinfSe + (1- e 2) e cos fSf] (3-92)

The variation of the true anomaly can be obtained from the relation for

sin f in terms of e and E.

e2) 1/2
sin f = (1 - sinE

1 - e cos E
(3-93)

The variation of sin f is

cos f 6 f =
(cos E - e)[sinE 5e + (1- e 2) 5E]

112
(1 - e 2) (1 - e cos E) 2

(3-94)

64



But cos f is given by

cos f = cos E - e (3-95)
1 - e cos E

so that

6f = sin E 6e + (1 - e 2) 6E

(i e2) I/2- (1 - e cos E)

(3-96)

(3-87) is substituted into (3-96) in order to express 5 f in terms of the

single variation 5 e.

[(1- e cos E) + (1 - e2)] sine

5f= 1/2 5e
2)(1 - e (1 - e cos E) 2

= (2 + e cos f) sin f 5 e (3-97)
1 - e 2

(3-97) is substituted into (3-92), and the expression for v s given by (B-66)

is utilized.

n a (1 +e cos f)2 sin f 6e

(i - e2) 3/2

(I + e cos f) v sinf
S

= 6e
1 - e 2

(3-98)

From (3-89) and (3-97) the effect of the rotation of v is

(2+ e cos f) v sinf
-v 5f=- s 6e

s 1 - e 2
(3-99)
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The total effect of 6 e on 6v is
r

_V

6e = - v s 6f+ 6r_e

= [- (2+ e cos f)+ (l+ e cos f)]

v s sin f
5e

1 - e 2

v sinf
S

1 -e 2
6e

(3-1oo)

This equation is in agreement with the term in the fourth row. third

column of the matrix in (3-61).

From (3-100) it is apparent that the rotation of v is the dominant

factor in determining the direction of the effect of 5 e on 6 vr (and also

on 6Vp).

Equation (3-100) points up the analogy between the variational

operator 6 and the derivative operator (d/dt) in the rotating r s z co-

Ordinate system. The radial component of the acceleration a on the

reference trajectory is

= d
d (v), u d (r)-v sar _-d-t- - -r d-}- _- (f) (3-101)

The radial component of the velocity variation 6 v relative to the ref-

erence trajectory is

6v r = 6_v,u r = 6r- vs 6f (3-I02)

Variation in _, the longitude of perihelion, causes a simple rotation,

in the reference trajectory plane, of the actual trajectory relative to the

reference trajectory. The angle of rotation is the fixed angle 6_. The

effect is to rotate both the position vector and the velocity vector through

5 ¢ without affecting the magnitude of either.
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67



ar

o_-¢- 6_ = r6_u s (3-103)

_)V

7 - - v (3-1o4)

These relations are illustrated by Figure 3.4.

Because z and v z are identically zero on the reference trajectory

for all values of time, 6 z and 6 v z are simply the projections on the

z-axis of r' and v', respectively, as shown in Figure 3.5. In the linear

approximation, the magnitudes of r and v are not affected by the varia-

tions 5 z and 6 v z. Also, the actual true anomaly f' is equal to the ref-

erence true anomaly f. Then,

5z =_r' ,u z = r 5isin (f- 6_) (3-105)

6v z=_v' ,_zU =vSicos (g- 5_) (3-106)

Angles 6 _ and 5i define the orientation of the actual trajectory

plane relative to the reference trajectory plane. If 5 i is zero, 5 _ is

undefined, and there are no variations in the z direction. Since 5 _ is

defined as the variation (from zero) of the longitude of the ascending

node, 6 i is always positive. 5 _2 may have any value from 0 ° to 360 °.

The out-of-plane "elements" appearing in the six-component vector on

the right-hand side of (3-61) are 5 i cos 5 _ and 6 i sin 6 _, each of

which is small and can take on either positive or negative values.

Because the force field is conservative, the variation in accelera-

tion, 5 a, depends only on 5 r and is independent of 5 v. The variation

in the magnitude of a comes directly from (3-60).

2_
5a r =--_ 5r

r

(3-107)

On the reference trajectory a is collinear withr; on the actual

trajectory a' is collinear with r'. Therefore, the small angle between
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a and a' is equal to the angle between r and r'. Then, since a and s
.... S

are both zero on the reference trajectory, the acceleration variation

component 5 a s is

5a s = as ' = a' :u s = a" r' u
- r' -- " --s

a 5s
r _--- 5 s (3-108)

3
r

In similar fashion,

5a z = az' = - _' 6z ('3-109)
r

Equations (3-107), (3-108), and (3-109) are the component equations

of the matrix formulation given by (3-7) and (3-9).

3.10 Transition Matrix

Equation (3-61) can be used to find analytic expressions for the
$

terms of the transition matrix Cji, defined by Equations (2-8) and (2-9).

The first six rows of (3-61) define a 6-by-6 matrix which relates the

state vector 5 x to the variations in the orbital elements. The inverse

of this matrix provides an expression for the variations of the elements

in terms of the components of 5 x. If the subscript j is added to all the

time-varying quantities in the first matrix, the state vector is 5 x_j, cor-

responding to time tj. If the subscript i is added to the time-varying

quantities in the inverse matrix, the variations in the elements are ex-

pressed in terms of the components of 5 x.. The product of these two
# --1

matrices is the transition matrix Cji, relating 5 xj to 5_1x..

The algebraic manipulations required to perform the matrix in-

version and the matrix multiplication are quite laborious. It is there-

fore worthwhile, before performing the indicated operations, to give

careful consideration to the choice of a single time-varying parameter,

the choice of a coordinate system, and the choice of a combination of

variations in the six orbital elements. A discussion of these choices

appears in the early sections of Appendix K. The amount of algebra is

reduced (but is still by no means trivial) if the time-varying quantity is
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the eccentric anomaly E, the coordinate system is the reference tra-

jectory flight path (p q z) system, and the variations in the orbital ele-

ments are grouped as shown below in the path deviation vector 6e.

/ )I/2
(i - e 2 6_ - n 6t o

6e =

6e

(1 - e2) 1/2

1 6a

2 a

e6_

e2) 1/2(i - 6i cos 6_

6i sin 6_

(3-110)

With these selections, the first six equations of (3_61) are transformed

into the following:

6zj I

6 Vp
Jl

6 qj!

6Vz. !

ifFj

tj

/ e2)i/2 "
(i- 6#- n 6t o

6e

(I - e2) 1/2

1 6a

2 a

e6_

I/2
(I - e2) 6icos 6

5 i sin 6

(3-111)
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This equation is the same as Equation (K-30) of ,Appendix K. The 3-by-6*

matrix Fj relates 6 --Jr"to 5 _e; the 3-by-6 matrix L.j relates, 5vj to 5 _e.

Equations (K-31) and (K-32) express the elements of Fj and Lj in terms

enThe inverse of the 6-by-6 matrix is designated .

The equation relating the orbital element variations to state vector

P

(1 - e2) 1/2
5_b - n 6t o

6e

(I - e2) i-/2

2 a _ = i V

e6_

1/2
1 - e 2) 6icos 5_

5i sin 5_

6e =

5P i

5q i

6z i

5 Vpi

5v

_qi
y

5v
z i

(3-112)

_iis a 6-by-3 matrix which gives the effect of 5 r i on 5 e. _i is a

6-by-3 matrix Oving the effect of 5v i on 5e.. Equations (K-34) and

(K-35) in Appendix K contain analytic expressions for the elements of
* *
R. and V..

1 1

The transition matrix is obtained by substituting ( 3 - 112) into (3 - 111).

Fj
6xj=

J

*
= C.. 5x.

:]I -I

{* *}R i V i 5x_ i

(3-113)
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°° N°°

, 1 j1

where C_ij= (3-114)
° T°°

I,_ j1 j1

and

Mji = Fj R i (3 -115)

N.. = F.V. (3-116)
31 j i

S.. = L.R. (3-117)
3_ j i

" (3-118)T.. =L. V.

The matrix multiplications indicated by Equations (3-115) to

(3-118) have been performed, and the analytic results are contained
.

in Equations (K-39)to (K-42). The complete expression for C.. is
j1

Equation (3-119). The angles E M and Ep, introduced in these equa-

tions for the purpose of simplification, are defined as follows:

_ 1 (Ej - E i)E M -
(3-12o)

= 1 (E. + E.) (3-121)
Ep 2 3 1

Equation (3-119) expresses all the elements of C.. in terms of
j1

only four parameters, namely, the eccentricity e and the mean angu-

lar motion n of the reference trajectory, and the eccentric anomalies

E i and Ej. Cji is presented as the sum of two matrices. The first

of the two is a diagonal matrix whose diagonal elements, reading from

top to bottom, are equal, respectively, to

Vj V. V.vi , , 1 , _9_ , 1 , 1

vi v i

Every term in every element of the second of the two matrices contains

either E M or sin E M. From this information it is clear that when
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tj = t i, the first matrix becomes the identity matrix and the second

matrix becomes the zero matrix. Thus, C.. is the sixth-order identity11

matrix, as indicated in Chapter 2 by Equation (2-10).

For this special case in which the reference trajectory is an ellipse,

a stronger statement can be made about the determinant of Cji than that

of Equation (2-13). Not only is the determinant of Cji equal to unity,

but there are two sub-matrices that can be formed, the determinant of

each of which is equal to unity. The first sub-matrix consists of the

sixteen in-plane elements of the second consists of the four out-of-
, Cj i;

plane elements of Cji.

A visual check of the terms in (3-119) can be made by comparing

C.. with its inverse C.. and noting that the inverse satisfies the rela-
J_ _J

tionship given by Equation (2-12).

If (3-119)is to be used for numerical computations performed on a

digital computer, the accuracy with which the terms have been entered

into the program can be effectively checked by the matrix multiplication
$ $

of ?ji by C j for arbitrary values of E i and Ej. If all terms have been

entered correctly, the product matrix is the identity matrix. If the

term in the m-th row and the n-th column is entered incorrectly, all

the terms in the m-th row and all the terms in the n-th column of the

product matrix will, in general, differ from the corresponding terms

of the identity matrix.

3.1 1 Fixed-Time-of-Arrival Guidance

The two basic equations in FTA guidance are (2-33) and (2-35); the

former relates the velocity correction c F to the predicted position varia-

tion at the target, the latter relates the state vect0r after the correction

is applied to the state vector before it is applied. The two equations are

repeated below for convenience.

c F = - KCD 5 -_D- (3-122)
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+
6x D

03 03

# *

-JDc I3

m

> 6x D (3-123)

, #

Analytic expressions for JDC and KCD can be determined directly from

the sub-matrices of CDC by the use of (2-27) and (2-28).

* and *
An alternate method of developing the terms of JDC KCD is

presented in Appendix K. This method involves the formulation of a

path deviation vector consisting of the position variations at two times,

t i and t 3.. First, 6 _ri and 6 --3r"are expressed in terms of 6 _e.

F i

> =

J
}6 e = _.. 6 e (3-124)

where Aij is a 6-by-6 matrix whose first three rows depend only on t i

and whose last three rows depend only on tj. The inverse of (3-124) is

6e = Aij = Hij _j (3-125)

_6 r_j _ 6rj

Hij is the 6-by-3 matrix relating 6eto 6r i when 6rj is held constant,

and Hji is the 6-by-3 matrix relating 6eto 6rj when SKi is held con-

stant. Equation (K-44) of Appendix K is an analytic expression for the

elements of Hij. The elements of Hji are obtained by interchanging

subscripts i and j in (K-44).

The state vector at any given time can now be related to the path

deviation _rector consisting of 6r i and 6rj. In particular, the state

vector at t. is
1

F i F i 6r i

6xi _'i L i ij j 6r_j

(3 -126)
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Equation (3-126)can be sub-divided into two equations,

variation and the other for velocity variation.

6r.=F_l i (Hi_ 6r i +H.]i 5rj)

6v i = L i (Hij 6r i +Hji 6rj)

one for position

(3-127)

(3 -128)

The former equation indicates that

F iHij = 13 F iHji= 0 3

The equation for velocity variation is simplified ,as follows:

6v--i = Jij 5ri + Kij 5rj

(3.-129)

(3-130)

where

Jij = Li Hij Kij = Li Hji (3-131)

(3-130) is the same equation as (2-26). Equations (3-131) are the de-
, *

fining relations for the 3-by-3 matrices Jij and Kij, which are the funda-

mental matrices of linear guidance theory. With the proper substitution

of subscripts they are the matrices appearing in (3-122) and (3-123).
,

Analytic expressions for the elements of JDC are obtained by substituting

D for i, C for j in Equation (K-47) of Appendix K. Since the subscript D

precedes the subscript C in JDC' the angle E M is given by

_1

EM - 2 (EC - ED) (3-132)

The correction matrix KCD is obtained from (K-46) and because of its

importance is reproduced here as Equation (3-133). In this equation,

since the subscript C precedes the subscript D,

EM = 1 (E D _ EC ) (3-134)
2
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The denominator factor X in the expressions for JDC

defined by

#

and KCD is

X = (3 E M - e sin E M cos Ep) (cos E M +e cos Ep) -4 sin E M

(3 -135)

It is interesting and perhaps somewhat surprising to note that, of

all the matrices considered in the last two sections, *KCD, the only one

needed to compute the velocity correction, is one of the simplest.

3.12 Variable-Time-of-Arrival Guidance

The VTA velocity correction and the corresponding relation between

6X--D + and 5x D are determined from Equations (2-41)and (2-44), re-
,

spectively. Aside from utilizing the analytic expressions for KCD and

JDC" no further simplification of these two equations is afforded by the

assumption of an elliptical reference trajectory.

When the expression for the VTA correction is formulated in the

critical-plane coordinate system, there is an additional simplification

for any two-body reference trajectory, whether it be elliptical, para-

bolic, or hyperbolic. From Equation (2-47)the correction may be

written as

c_ •

C_w = = Y (3-136)

5

It is shown in Section N. 8 of Appendix N that the upper right-hand term

of the 2-by-2 matrix Y is equal to zero for two-body reference trajec-

tories. Thus, only three quantities need be evaluated in order t(_ com-

pute the correction vector required at some time ¢C for a given miss

distance vector.
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In Section O. 13 the following expression is derived for Y:

Y=n

(I- o)4B

K33__C(D COSB iD -B )

(3 -137)

where

B = [(Kll sin _D - K12 cos _D )2 + (K21 sin _D - K22 cos _D )211/2

C = [B 2 sin 2 (fD 2 X 2 2- fc ) sin 2 i D + K33 sin

1/2.

E M cos 2 i D]

(3 -139)

D = (Kll 2 _ K122 + K 212 - K222) sin_D cos _D

+ (Kll K12 + K21 K22) (sin2_D - cos2_D ) (3 -140)

The K factors are functions of the eccentricity e and the two eccentric

anomalies E C and ED; they are defined in Equations (O-77)to (O-81).

_D and iD are the orientation angles of the relative velocity vector Y--R

with respect to the PD' qD" z axes.

Equation (3-137)indicates that reducing the magnitude of K33 and D

and increasing the magnitude of C all have the desirable effect of re-

ducing the magnitude of c V. The role of the magnitude of B is more

equivocal. If6 _ D is much larger than 6_7D-, B should be as large as
m

possible; if 6 r/D is much larger than 5 _ D-' the magnitude of B should

be kept small. All of these factors are properly weighted in the deter-

mination of the optimum correction time in the manner indicated in

Section 2.16.

,
The physical significance of the zero element in Y is that the com-

ponent of the correction vector along the line of nodes between the critical

plane at t = t C and the reference trajectory plane is affected by only that

component of the miss distance vector that lies along the line of nodes

between the critical plane at t = t D and the reference trajectory plane.
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The nodal component of _cw is completely independent of the variant

motion along the z-axis; it depends only on 6 _D-' which by definition

lies in the reference trajectory plane, on the in-plane elements of KCD,

and on _D' the angle in the reference trajectory plane between the PD-

axis and the line of nodes. Therefore, the correction required for the

out-of-plane component of the predicted position variation (i. e., for

6 zD-) is contained entirely in the tic-component of the correction.

3.13 General Discussion of Singularities in the Matrix Solution

The solution for the state vector at time t. as a function of the state
J

vector at time t i has no singularities. Irrespective of the time selected

for ti, the six components of 6x i are independent and therefore can be

used to determine the components of the state vector 6 xj for any tj.
The mathematical validity of this statement is manifest from the fact

that the determinant of Cji can never vanish; it is always equal to one.

However, if the path deviation vector 5 e is expressed as a function

of the path deviation vector consisting of two position variation vectors

6r i and 6rj, as in Equation (3-124), there may be singularities in the

solution. There are certain combinations of t. and t. for which the com-
1 j

ponents of 6r._2 are not independent, of the components of 6r i. For these,

combinations,, the, determinant of A..13 vanishes, and hence matrices Hlj ,

i" Jij' and Kij cannot be determined.

There are three different types of combinations of t. and t. for which
* 1 J

Aij becomes singular. The first type occurs when the difference between

ti and tj is an integer multiple of the reference period P; the second type

occurswhen the difference in true anomaly (fj - fi)is equal to (2N-I)

radians; the third type occurs when the factor X, defined by Equation

(3-135), is equal to zero. These three types are discussed individually

in the following three sections. A more comprehensive analysis appears

in Appendix O.

A study of these singularities can be justified on academic grounds

simply because they do exist, and an understanding of why they exist

leads to a more thorough comprehension of the characteristics of ellip-

tical motion. In addition, the study has practical significance if space
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journeys are contemplated in which the total difference in true anomaly

(between injection and arrival at the destination)is greater than _ radians.

In order of increasing value of (fj - fi ), the first three singularities

occur at(fj - fi ) = 0,_r , and 2 v radians. The first is atrivial case; if

t i = tj, it is obvious that 5 r i = 5 rj, and hence the components of the

six-vector composed of 5 r. and 5 r. are not independent. The singulari-
--1 --j

ties at v and 2 7r radians are examples, respectively, of the second type

and the first type. The first non'trivial case of a singularity at X = 0

occurs at a value of (fj - fi ) between 2 v and 4 _r radians.

For manned interplanetary reconnaissance missions, minimization

of total flight time is of prime importance because of logistic considera-

tions. Such missions will normally involve a total change in true anomaly

of approximately _r radians for each of the two legs, outbound and return.

The only singularity that need be considered on such missions is the one

of the second type that occurs at (fj - fi ) = 7r radians.

There are two types of space missions which involve considerably

larger changes in true anomaly. The first is an unmanned nonstop round-

trip reconnaissance of either Mars or Venus as described in Reference

(2). The mission can be accomplished with relatively low expenditure of

energy if the vehicle makes two circuits of the sun during the time that

the earth makes three circuits, i.e., in three years. In one of the legs

of such a journey, either outbound or return, the true anomaly difference

must be greater than 2 _ radians.

The second type of mission with large difference in true anomaly is

that of a space vehicle in a temporary parking orbit about another planet.

Such a trajectory may entail an appreciable number of complete circuits

before the vehicle reaches its "destination", which is the point at which

thrust is to be applied for the return trip to earth.

In both of these types of extended missions singularities of all three

types can be encountered.

It is shown in the following sections that, in general, it is not possi-

ble to compute a finite FTA velocity correction when t C and t D are such

that the conditions for any one of the three types of singularities are
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satisfied. If VTA guidance is used, a finite correction can be computed

under the conditions for the second and third types of singularities, but no

finite VTA correction can be computed if the singularity is of the first type.

3.14 Singularities at (tj - t i) = NP

When t i and tj are an exact number of reference periods apart, the

position variations 6 r i and 6 rj can differ from each other only due to

the fact that the period P' of the actual trajectory differs slightly from

P, the period of the reference trajectory.

6 pj

6 qj

6z.
Jj

= <

/ 6p i

6 qi -

5z.
\ 1

Nv. 6P
1

0
\

> (3-141)

Inthe path deviation vector consisting of 6r i and 5 r j, only four of the-- $

six components are independent. Hence the rank of matrix A.. is re-
, 1j

duced from six to four. Despite the fact that A.. is singular, (3-141)
1] 1 6a

can be used to solve for 6P, and by the use of Kepler's third law 2 a

the third element of 6e, can be computed.

1 6a 1 6P

2 a 3 p

(6qj - 6qi)

3NPv.
I

(3 -142)

The other five elements of 6 e cannot be determined.

If correction time t C and arrival time t D are an exact number of

reference periods apart, it is not possible to compute a small finite

FTA velocity correction which will affect the predicted values of

6 PD- and 6 ZD-. If either of these components of 6 r D- is non-zero,

6 rD + must be non-zero. The only condition under which it is possible
I

to compute a finite c F that nulls 6 r D- is when 6 r D is parallel to the

velocity vector v D. Then the required correction changes the period

of the motion in such a manner that 6qD is reduced to zero. The

equation for the correction in this special case, developed as (O-13)

in Appendix O, is

c F - P" (6qD-) u (3-143)
3 N P a VD 2 --qD
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Equation {3-143} has little practical value inasmuch as it applies to

a condition whose likelihood of occurrence is essentially zero. However,

it does serve to illustrate a paradoxical characteristic of elliptical mo-

tion. A positive 6qD indicates that the predicted vehicle position at

tD is slightly ahead of the desired position. The correction therefore

must slow the vehicle down somewhat in order to reduce 5qD to zero.

But (3-143} indicates that for a positive 5qD- the required velocity in-

crement along the qD-axis' which is also the qc-aXis' is positive, so
that the vehicle experiences an instantaneous increase in orbital velocity.

The question that arises is this: How can an initial increase in velocity
cause an eventual retardation of the vehicle motion so that a positive

5qD is reduced to zero? The seeming contradiction is clarified by
Kepler's third law. The initial increase in velocity increases the total

energy of the path. An increase in total energy signifies an increase
in the length of the semi-major axis a, which, from Kepler's third law,

is accompanied by an increase in the period P. The increased period
is so determined that after N circuits of the focus the vehicle arrives

at the desired destination point at time tD. Thus, the vehicle's posi-
tion variation is initially increased by the correction but is eventually

reduced to zero at tD.

If VTA guidance rather than FTA guidance is usec_, it is still not

possible in the general case to compute a finite velocity correction

when (tD - tC) = N P. There are three special situations, however,

in which a finite correction can be determined. The first is the trivial

case when 5 r D is parallel to v R and no correction is required. The

second is the same as the special case for FTA guidance; i.e., 6 r D

is parallel to VD; in this case the VTA correction is the same as the

FTA correction given by Equation {3-143}. The third special case is

the two-dimensional case, in which both 5 r D and_v R lie in the ref-

erence trajectory plane; under these circumstances, the VTA correc-

tion is again given by the right-hand side of Equation {3-143}.

A physical explanation of the inability to compute a finite FTA

correction is based on the fact that the new path resulting from any

correction must contain both the vehicle's actual position C' at the

time of the correction and the desired destination point D. When C'
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and D are spatially close to each other but not coincident and the line

C' D is not tangent to the reference trajectory, the difference between

the required new trajectory and the reference trajectory is generally

so great that it precludes the use of linear theory in computing the

velocity correction. Even when the requirements on the correction

are relaxed by the use of VTA navigation, it is not possible in the

general case to compute a finite correction, because there is no path

lying close to the reference path that passes through C' and some

point on the line through D parallel to v R.

A more detailed analysis of the singularities at (t D - t C) = N P

appears in Sections O. 4, O. 5, O. 14, and O. 17.

3.'15 Singularities at (fj - fi) = (2 N-l)

If the difference in true anomaly (fj - fi) is an odd multiple of

radians, the in-plane components of 6 r i and 6 rj are independent of

each other, but 6 z. and 6 z. are not independent. The relationship
t j

between the latter two can be derived from the z-component of (3-57),

the Vector equation for 6 r.

6z i = r i sin (fi - 6_) 6i (3-144)

6zj = rj sin (fj - 6_) 6i

= rj sin [fi +(2 N-I)

= - rj sin (fi 612) 6i

r°

- I 6z ir.
t

- 6i

(3 -145)

Only five of the six elements of the two-position path deviation vector

and the rank of J_ij is reduced from six to five. Theare independent,

four in-plane components of 6 e can be determined uniquely from meas-

urements of 6 r i and 6 rj; the two out-of-plane elements cannot.
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If the correction time is such that (fD - fc ) = (2 N-l)_r , no finite

FTA velocity correction can in general be computed. If VTA guidance

is used, a finite correction can be applied as long as -Y-R has a non-zero

component in the z direction. The computed VTA correction vector lies

in the reference trajectory plane.

As in the case of the singularities at (t D - tC) = N P, the singulari-

ties at (fD - fc ) = (2 N-l)r can be interpreted physically by a considera-

tion of the requirements imposed on the corrected path. If the actual

correction point C' has a small position variation 5 z C normal to the

reference trajectory plane and if the difference in true anomaly between

C' and D is an odd multiple of 180 °, then the plane containing position

vectors r C' and r D is perpendicular to the reference trajectory plane.

But the plane containing r C' and r D is also the plane of the corrected

trajectory computed by means of FTA guidance. Because the planes

of the reference trajectory and the corrected trajectory are perpendic-

ular to each other, a finite FTA velocity correction cannot be determined.

If VTA guidance is used, the destination point is changed from D to

the point at which the line through D parallel to v R intersects the plane

of the uncorrected trajectory. Thus the VTA correction does not alter

the plane of the vehicle's motion; rather, it adjusts the trajectory so

that the vehicle arrives at the destination planet at precisely that time

when the planet is passing through the plane of the vehicle's actual tra-

jectory.

This type of singularity is discussed further in Sections O. 6, O. 7,

O. 15, and O. 17.

3.16 Singularities at X = 0

Ift iandtj are such thatX = 0, 5z land 5zj are independent of each

other, but a linear relation exists among the components 6 Pi' 5qi,

5pj, and 5qj. This relation, as presented in Equation (O-30), is

pj 5qj - Pi 5qi - b2 (3E M - e sin E M cos Ep)

(cos _j 5pj + cos _'i 5Pi)
(3 -146)
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where b is the length of the semi-minor axis of the reference ellipse.

Only five of the six components of the two-position path' deviation vector
$

are independent; the rank of m, atrix Aij is five. Observations of 6 r.--I

and 6 r. can be used to determine the two out-of-plane elements of 6 e,
--j

but the four in-plane elements are indeterminate.

The X = 0 singularities differ from the other two types in that the

singularity points depend on e, an orbital element of the reference

• ellipse. In the first two types the singularities occur at known values

of the difference in true anomaly, irrespective of the characteristics of

the reference trajectory.

Figure O. 3 of Appendix O is a plot of X as a function of (Ej - E i)

for e = 0.25 and E. = 210°; these values are typical for outbound jour-
3

neys from Earth to Mars or return trips from Venus to Earth. The

singularity points in the plot are the points at which the curve crosses

the abscissa axis. The graph indicates an X = 0 point at (Ej - E i) = 0 °

and on# additionalX = 0 point in the range 2N_r < (Ej - E i) < 2(N + 1)zr

for each positive value of N. It is shown in Section O. 8 that as N gets

very large, the singularity point associated with a given end point Pj

is the point at which the line joining Pj and the vacant focus intersects

the ellipsewhen extended through the vacant focus; this is illustrated

in Figure O. 4.

In the general case, whent C andt D are such that X = 0 it is not

possible to compute a finite FTA correction. A finite VTA correction

can be computed as long as Vl: t has a non-zero component in the ref-

erence trajectory plane.

A physical interpretation of the X = 0 singularities can be obtained

from an examination of a set of curves in which the time of flight t F

for a journey from a planet at distance r 1 from the sun to a planet at

distance r 2 from the sun is plotted as a function of the length a of the

semi-major axis of the elliptical path. Figure O. 8 is such a plot for

a journey from Earth to Mars. Each curve in the figure corresponds

to a particular value of the transfer angle, which is defined as the total

change in true anomaly.
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The curves indicate that when N = 0, corresponding to a transfer

angle smaller than 360 °, there is no minimum value of tF for a given
transfer angle at any finite value of a. However, for N = i, corres-

ponding to a transfer angle between 360° and 720°, each curve has a

distinct minimum value of tF. The type of behavior indicated by the
N = 1 curves would also be present in curves for higher values of N if

they were plotted.

In Section O. 11 it is proved that the slope of each time-of-flight

curve in Figure O. 8 is proportional to the factor X, and thus the X = 0

singularities occur at the points corresponding to the minimum time of

flight on the various curves.

The physical meaning of the zero-slope points on the curves is that

at such points if r 1, r 2, and the transfer angle are held fixed, the time
of flight is insensitive to small changes in a. It follows that if rl, r 2,

tF, and the transfer angle are known at a zero-slope point, it is still
not possible to solve for a unique value of a. This conclusion corrob-

orates the earlier statement, at the beginning of this section, that the

in-plane components of 6e cannot be found from 6r i and 6rj if X = 0.

In Section O. 12 the partial derivatives are manipulated to derive

a relation that indicates that if r I' iF' and N are specified and if r 2

is such that X = 0, then r 2 is insensitive to small changes in the in-
plane orbital elements. Therefore, it is not possible to compute a

small FTA velocity correction which, if applied at tl, can correct a

predicted position variation at t 2.

The factor X is a function of the eccentricity e and the two eccen-

tric anomalies EC and ED. Whent C andt D are such that X = 0 for
a specified reference trajectory, any small finite change made in the

time of arrival alters the effective value of ED, so that X is nO longer
equal to zero and the singularity condition no longer exists. This, in
essence, is what occurs when VTA guidance is utilized at a correction

time for which X would be equal to zero if the arrival time were fixed.

The VTA scheme changes the arrival time and computes the finite

velocity correction required by the new arrival time.
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The ramifications of the X = 0 singularity,

of Lambert's theorem for the time of flight,

greater detail in Sections O. 8, O. 9, O. 10,

3.17 The Noncritical Vector

including a development

are taken up in considerably

O. 11, O. 12, O. 16, andO. 17.

The key to a more fundamental understanding of the physics of VTA

guidance may lie in an intensive investigation of the rotation of the non-

critical vector w as a function of the time of correction t C. Such an in-

vestigation has not been undertaken in the present study, but certain

characteristics of the orientation of w have been determined as a con-
h

sequence of the analysis of singularities in Appendix O. These charac-

teristics may be summarized as follows:

(1) At t C = t D the w vector is parallel to v R.

(2) When (t D - t C) = NP, w lies in the plane perpendicular to

VD; i.e., the component of w in the qc direction is zero. The z-

component of w remains the same for all values of N; the Pc-C°mp°nent

alternates in sign for successive values of N. This behavior is indicated

by Equation (O-107}.

(3} When (fD - fc ) = (2 N-I) _r, w is parallel to the z-axis.

(4) When X = 0, w lies in the reference trajectory plane, its direc-

tion in the plane being a function of the number of complete circuits be-

tween t C and t D. This is deduced from Equation (O-117).

3.18 Low-Eccentricity Reference Trajectories

It has already been pointed out in Section 3.7 that the analysis pre-

sented in that section is applicable to ellipses of "moderate" eccentricity

and is not directly applicable when the reference trajectory is circular

or nearly circular. In this section the effects of small variations of the

elements of reference trajectories of low eccentricity are considered.

It is shown that the relations already formulated for the transition ma-

trix Cji and the correction matrix KCD are applicable to low -eccentricity

two-body orbits.
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The term "low eccentricity," as used here, indicates that the

eccentricity of the reference trajectory is of the same order of mag-
nitude as the non-dimensional orbital variations (6 a/a), 6e, etc.

Thus, a term involving the product of e and one of the small orbital
variations is a second-order term in the "small" quantities.

The troublesome characteristic of low-eccentricity trajectories

is the fact that large variations in the position of perhelion produce

only small variations of the actual trajectory from the reference tra-

jectory. Consequently 65, the variation in the longitude of perhelion,
which is assumed to be small when e is appreciably greater than zero,

need not be small when e is close to zero. Likewise, the variations

in the anomalies, 6f, BE, and 6M, need not be small when e is close

to zero. However, the angles (6f+ 65), (6E + 65), and (6M + 85),

which define angular position on the actual trajectory relative to the

well-defined and fixed x-axis of the reference trajectory, are small

regardless of whether or not e is small.

wi_h these factors taken into consideration, general relations

(i..e., relations applicable for low e as well as moderate e) for(BE +

8 5), 6 r, and 6 s are developed in Appendix H as Equations (H-25),

(H-28), and (H-32), respectively. 6 z is unaffected by the fact that

the eccentricity is low. In Appendix J equations specifically appli-

cable when e is small are derived for 6r, 6v, and 8a. The ex-

pressions for the components of 6 r and 6 v are contained in the ma-

trix equation (J-20); the components of 6a are presented in (J-21).

These equations can be compared with (3-61), which gives the cor-

responding relations for ellipses of moderate eccentricity.

In Section J. 5 it is shown that the constants comprising the

vector on the right-hand sides of (J-20) and (J-2 I)are linearly re-

lated to the constants of integration k I through k 6 developed in the

integration procedure of Appendix G and described in Section 3.6.

Therefore, the equations resulting from the integration, (3-3 I),

(3-32), and (3-33), are applicable when the eccentricity is low.

From this it can be deduced that the formulation for the transition

matrix given by (3-I 19)and the formulations for JDC and KCD des-

cribed in Section 3.11 are also applicable when e is small.
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The equations for Cji, JDC' and KCD are not appli.cable when the

eccentricity is so close to unity that a small variation may cause e to

equal or even exceed unity.

3.19 The Destination Point

In Section 2.18 it was pointed out that the magnitude of the trunca-

tion error due to linear ization can be reduced by choosing as the nominal

"destination" of the midcourse guidance system a point on the reference

trajectory which the vehicle is scheduled to reach at some time earlier

than the time of its closest approach to the destination planet. When the

assumption of a two-body heliocentric reference trajectory is super-

imposed on the linearity assumption, there is an even more cogent rea-

son for selecting an early nominal destination point. The two-body ap-

proximation neglects, in addition to all second-order and higher-order

terms in the Taylor series expansion, the first-order terms associated

with the gravitational forces due to the disturbing planets. Thus, the

approximation deteriorates markedly as the vehicle approaches the

vicinity of a planet.

It is now necessary to establish a criterion for selecting the early

destination point. The point at which the reference trajectory intersects

the sphere of influence of the destination planet is a reasonable destina-

tion point for the linear n-body analysis of Chapter 2. For the linear

two-body analysis this point is too close to the planet; a more conserva-

tive selection is the point at which the reference trajectory intersects

the sphere of perturbative relevance of the destination planet. This

sphere is defined as the boundary along which the gravitational attrac-

tion due to the planet is equal to 1/100 of the gravitational attraction

due to the sun.

Table 3-1 lists the radii of the spheres of influence and the spheres

of perturbative relevance for all the planets. The data are derived from

Table 9-1a of Ehricke, Vol. II (31).
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Table 3- 1

Planetary Data

Planet

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

Semi-major

Axis

(a.u.)

0.387

Planet Radius

Radius Sphere

(mi.) Influence

1560 0.694 X

0.723

1.0

1.524

5. 203

9. 539

19.182

30.058

39.518

3860

3960

2060

43,500

35,800

15, 900

15, 600

(2080)

of

of

(mi.)

105

0.383 X 106

0.575 X 106

0.358 X 106

27.8 X 106

26.6 X 106

32.2 X 106

54.0 X 106

21.1 X 106

Radius of Sphere

of Perturbative

Relevance (mi.)

0.147 X 106

1. 055 X 106

1.86 X 106

0.824 X 106

154 X 106

160 X 106

122.5 X 106

207 X 106

(21.5 X 106)
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CHAPTER 4

-ILLUSTRATIVE CALCULATIONS

4.1 Summary

Calculations are performed on an Earth-Mars reference trajectory

to illustrate the method of determining the optimum time to apply a VTA

velocity correction. Curves are obtained for FTA as well as VTA guid-

ance. Additional computations show the effect of position variation and

velocity variation at any intermediate time on position variation and

velocity variation at the nominal time of arrival at the destination. The

analytic formulations of the required matrices, as developed in Chapter 3,

are used in the calculations. The physical significance of the curves is

discussed.

_. 2 Introduction

The method of utilization of the guidance theory developed in Chapters 2

and 3 can best be demonstrated by numerical computations based on a speci-

fied interplanetary reference trajectory. In order to show the effects of all

three types of singularities discussed in Chapter 3, a reference trajectory

has been chosen in which the total transfer angle is greater than 360 ° . Such

a trajectory is the outbound leg of Mars Trajectory No. 1034, described on

Pages 102 and 103 of Reference (5). This trajectory is one of those gen-

erated by the staff of the M. I.T. Instrumentation Laboratory in connection

with its study of the feasibility of an unmanned recoverable interplanetary

space probe.

Figure 4-1, which illustrates the trajectory, is a reprint of a portion

of Figure 4-8 of Reference (5). The orbits of Earth, Mars, and the space

vehicle are shown, and their respective positions at three different times

during the voyage are indicated. In the cases of Mars and the space vehicle,

that part of the orbit which is represented by a solid line is the part for which

the orbital plane is "above" the ecliptic (t. e., z E is positive), while the

dashed lines indicate the parts of the orbital planes "below" the ecliptic. The

last frame of the figure shows the vehicle's trajectory relative to Mars as

it passes by the planet.
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Figure 4. 1 Outbound Leg of Trajectory No. 1034
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For these illustrative calculations the destination point has been taken

as the point of closest approach to Mars, and an elliptical reference tra-

jectory between injection and arrival at the destination has been formulated'.

The perturbative effect of Mars on the vehicle has been ignored. Although

this combination of conditions is not realistic for an accurate guidance

analysis (as indicated in Section 3.19), it has the advantage of being more

easily adapted to the data that were initially available, and it is adequate

to demonstrate the techniques that have been formulated.

The programming of the computations and the plotting of the graphs in

this chapter have been carried out by Captain Mack Mauldin, Jr. and Captain

Robert G. Millard, both of the United States Air Force, and are described

in detail in their Master of Science thesis. (32)

4.3 Characteristics of the Reference Trajectory

The following data apply to Trajectory No. 1034:

Departure date from Earth

Arrival date in vicinity of Mars

Time of flight

Minimum distance of space vehicle

from surface of Mars

June 17, 1962

November 17,

2. 422 years

4,693 miles

1964

The orbital elements of the heliocentric elliptical trajectory are

t
O

_2 E

i E

¢oE

a = 1. 3242 a.u.

e = 0. 2432

= 0. 0545 years after epoch at injection into heliocentric orbit

= 85.80"

= 3. 130 °

= - 158.41 °
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The alternate orbital elements are

M o= - 12.86 ° = M I

CE= - 72.61 °

The period and mean angular motion are

P = 1. 524 years

n = 4. 123 radians]year

At the time of injection,

tI =0

fI = - 21.59 °

E I = - 16.92 °

At the time of arrival at Mars,

t D = 2. 422 years

fD = 552.24 °

E D = 555.66 °

M D = 559.42 °

The total differences in the anomalies are

fD - fI = 573.83 °

E D - E I = 572.58 °

M D - M I = 572.28 °

The magnRude and orientation angles of the relative velocity v R are

v R = 11, 390 ft/sec

_D = 123.25 °

i D = 77.12 °
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4.4 Description of Data and Graphs

Figures 4.2 through 4.17 are graphs representing the guidance param-

eters that have been computed for Trajectory No. 1034. In this section the

individual figures are described, and the methods of obtaining the plotted

data are indicated. In some cases the equations used by Mauldin and Millard

to obtain the data differ in form, but not in substance, from those that are

suggested here. The difference is due to the fact that the final forms of

some of the equations developed in this thesis were evolved subsequent to

the time that the computations were made.

The unit of length used in the computations is the astronomical unit

(a. u. ), and the unit of time is the year.

'In most of the plots the abscissa is (f2 - fl )" f2 is the same as fD'

the true anomaly at the destination point; it is equal to 552.24°. The

variable part of the abscissa is fl' the true anomaly at any earlier point

of the trajectory, fl is usually associated with the time of a midcourse

correction. The value of fl (and of time t 1} increases from left to right

in the graphs; the plotted value of (f2 - fl ) increases from right to left.

The choice of (f2 - fl ) as the abscissa is motivated by the fact that two

of the three types of singularities in FTA guidance occur when (f2 - fl }

is an integer multiple of 180 °

The reciprocal of the velocity correction is plotted instead of the

correction itself, in order to circumvent the scaling difficulty at the

singular points, where the FTA correction becomes infinite.

Figure 4.2 is th_ basic plot for the determination of the optimum

time of correction. 1/c V is plotted as a function of (f2 - fl } for several

fixed values of _. The computation is normalized by computing c V and

1/c V for a miss distance magnitude, 5p-, of one astronomical unit. The

ordinate 1/c V in the graph has the dimensions of years/a, u. To give the

ordinate more physical significance, it maybe noted that a velocity of

1 a.u./year is equivalent to 2.94 mi/sec or 15, 540 ft/sec. Thus, if the

value of 1/c V read from the graph is 1 year/a, u. and the miss distance

is 9270 miles (10 -4 a. u. }, the magnitude of the correction is approxi-
1

mately 1 _- ft/sec.
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Figures 4.3 and 4.4 are cross-plots of the data in Figure 4.2. In

4.3 the values of (f2 - fl)opt ' corresponding to the maxima of 1/c V, are

plotted as a function of _; in 4.4 the maxima of 1/c V are plotted as a

function of _. The dotted portions of the curves, occurring at _'s between

170 ° and 180 °, are caused by the fact that the constant-_ curves in this

region (which are not shown in Figure 4.2) exhibit a high zero-slope plateau,

with no definitive values of (f2 - fl)opt "

Figures 4.5 and 4.6 are the FTA correction curves corresponding to

the VTA curves of Figure 4.2. These curves are drawn for 5p- = 1 a.u.

and 6_D = 0. It is necessary in the FTA case to assume a value of 6_D ,

because this component of the position variation does affect the FTA cor-

rection, although it has no effect on the VTA correction.

The data for Figures 4.2, 4.5, and 4.6 are obtained by use of the

equations of Appendix N.

(cF)W = _C CF = - _(C _CD _(D T (6rD-)W (4-1)

w

Since 5_D has been arbitrarily set at zero and 6p has been arbitrarily

set at 1 a.u.,

(6rD-) W = (6p-) Isin = sin

0 0

(4 -2)

(4-2) is substituted into (4-1).

(CF) w $ , _D T=_ X C KCD

f 1 0 0

0 1 0

0 0 0

(4 -3)
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The elements of XC* KCD* _D T are given by Equation (N-25). The non-zero

element in the third row and third column is not used. The first two com-

ponents of the solution for (CF) W constitute the two-dimensional vector c W.

The computation is carried out by fixing E l, determining the corres-

ponding value of (f2 - fl )' then computing the components of (CF) w for

ten-degree increments in g/ between 0 ° and 170 °. The process is repeated

for a range of El'S between E I (- 16.92 ° ) and E D (555.66°).

Figures 4.2, 4.5 and 4.6 show the effect on the velocity correction of

a position variation at the destination which lies in the critical plane. Fig-

ures 4.7 through 4.11 are the results of a similar study, the difference

being that in these plots the position variation at the destination lies either

normal to or in the reference trajectory plane. In the figures 1/c V and 1/c F

are plotted as a function of (f2 - fl )f°r various orientations of a 5r D vector

whose magnitude is 10 -4 a.u. The basic equations used in the computations

are

¢--F = - KCD 6rD (4-4)

w wT_ C--F (4-5)£V = 3 T
W W

where

w = KcDv R (4-6)

and Equation (3-133)contains analytic expressions for the elements of *
KCD.

Figures 4.12 through 4.17 indicate the effect of a position variation or

a velocity variation at time t 1 on the magnitude of the position and velocity

variations at time t 2. The data are obtained by use of the transition matrix,

the elements of which are given in Equation (3-119).

5x 2 rt =_21 (4 -7)
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4.5 Analysis of Graphical Results

Figure 4.2 indicates that for the given reference trajectory there is

a minimum value of c V between 0 ° and 180 ° of true anomaly difference,

another minimum between 180 ° and 360 °, and a third between 360 ° and

540 ° Except for the unusual behavior of the curves in the range of

close to 175 °, the three minima of c V for a given @ are roughly equal;

this is indicated by the cross-plot of Figure 4.4. The actual value of

c V is strongly affected by the predicted _. When ip is equal to 90 °,
min

the required correction is approximately an order of magnitude greater

than it is when _ is in the vicinity of 0 ° (or 180°).

The optimum time of correction, t C , can be determined directly
opt

from the value of (f2 - fl } corresponding to c V ., Figure 4.3 indicates
min

that in the range of _ between 45 ° and 135 ° there is little variation of

t C with _, but in the _ranges 0 ° to 45°and 135 ° to 180 ° (particularly
opt

in the vicinity of _ = 175°)the variation of t C with _ is noticeable.
opt

Curves similar to those of Figure 4.3, but with t C replacing
opt

(f2 - fl } opt as the ordinate, can be built into the on-board computer of

a space vehicle and used to determine the time of the next VTA velocity

correction. The fact that there are three values of t C for each _ re-
opt

quires that some type of simple strategy be designed to determine which

of the three to choose if all three are subsequent to the time at which a

reliable value of _ has been computed. If the space mission is such that

three or more midcourse corrections are to be made, an effective strategy

is to apply the correction at the earliest t C following the time of deter-
opt

mination of _. It is then possible to apply three corrections, each at the

t C corresponding to the _ computed for a particular segment of the
opt

actual trajectory. If only one midcourse correction is to be applied during

the voyage, it is generally advantageous to select the last of the three

values of t C in order to reduce the uncertainty in position at the time of
opt

arrival at the destination. Selection of the last t C tends to reduce post-
opt

tion uncertainty in two ways: first, it allows more time for gathering data
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from which 5x D is estimated, and consequently the accuracy of the compu-

tation of c V is improved; secondly, uncertainty in the application of correc-
tive thrust generally causes a smaller uncertainty in final position if the
time of the correction is closer to the time of arrival.

The problem of which t C to select for a given _ has no relevance for
opt

manned space missions. The primary consideration for such missions is

minimization of the time of flight. The total transfer angle (fD - fi t for one

leg of a manned flight is normally less than 180°; consequently there is onlyone

value of t C for each _. The portion of Figure 4.2 for the range of
opt

(f2 - fl } between 0 ° and 180 ° is typical of the curves that may be expected

on an outbound manned trip to Mars.

Figure 4.3 indicates that the minimum value of (f2 - fl)opt is 80 °. If

the vehicle is less than 80 ° away from its destination, there is no need to

determine (f2 - fl)opt ' for it will have occurred at a point on the trajectory

that the vehicle has already passed. The most economical time to correct

is then the earliest feasible time (i. e., the earliest time at which a reliable

estimate of 5_p is available}.

Figures 4.5 and 4.6 contain FTA curves corresponding to the VTA

curves of Figure 4.2. It is difficult to make a direct comparison of the

VTA and FTA velocity corrections, because the latter are dependent on

the additional variable 5 [D-; the curves of Figures 4.5 and 4.6 are drawn

for 5 [D- equal to zero. For the non-singular points in the two figures,

the effect of varying 5 _D- at a given (f2 - fl } and a given _ is to produce

a variation in c F from a minimum value which isequal to c V under the

given conditions to a maximum value which is at least as much greater

than the plotted value of c F as the plotted value is greater than c V. At

the singular points c F is infinite regardless of the value of 5 _D-

The most immediately noticeable difference between the VTA and FTA

curves is the difference in the number of singularities. Whereas the only

singularities in c V occur at (f2 - fl } = 0° and 360 °, there are singularities

in c F at (f2 - fl } = 0°" 180°" 360°' 470°" and 540 ° . The singularity at

470 ° is the X = 0 singularity. These results are in agreement with the

analysis of Appendix O. Although there is no singularity in the c V curves
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at true anomaly differences of 180 ° and 540 ° , the curves do exhibit minima

of 1/c V (or maxima of c V) at these points; however, the effect of the X = 0

singularity is completely obliterated by VTA guidance. This behavior is

due in part to the fact that i D = 77 °, and consequently v R is inclined only

slightly to the reference trajectory plane. This orientation of vRtends to

make the VTA system relatively more effective in counteracting the in-

plane singularity at 470 ° and relatively less effective in counteracting the

out-of-plane singularities at 180 ° and 540 °

When the vehicle is fairly close to its destination, i.e., for values of

(f2 - fl ) of 20 ° or less, the velocity correction is essentially independent

of _ and is the same for VTA as it is for FTA. The variation of 1/c with

(f2 - fl ) is fairly linear in this range; the slope is approximately 0. 0067

yr./a, u. per degree of true anomaly for a predicted miss distance of 1 a. u.

When (f2 - fl ) increases from 20 ° toward 45 °, the curves for the vari-

ous values of _ start to diverge from the common curve characterizing the

region below 20 °, but for a given _ and a given (f2 - fl )the ordinate is still

about the.same in the FTA case as it is in the VTA case. Consequently, if

a final vernier correction is to be made at a value of (f2 - fl )less than 45 °

and if 5r D is equal to 6p (i. e., if the noncritical component 5_D is small

enough so that it does not appreciably affect the magnitude of 5 rD-) , there

is no fuel saving effected by the use of VTA for this correction. The really

important consideration in making the vernier correction is to make it as

early as possible.

The general shapes of the curves for VTA and FTA guidance are quite

similar through the range 0 ° to 180 ° in (f2 - fl )" and there is still some

similarity in the range 180 ° to 360 °. The similarity is greatest for _'s

near 90 ° . In the range of (f2 - fl ) between 360 ° and 540 ° the VTA and FTA

curves are decidedly different due to the effect of the X = 0 singularity at

(f2 - fl ) =470°"

With the exception of the special case _ = 0 °, each of the constant-

curves for FTA guidance has four minimum values of c F in the plotted range

of (f2 - fl }" The minima occur at intermediate points between the singulari-

ties at (f2 - fl ) = 540°' 470°" 360°' 180°, and 0 ° For _'s near 0 ° (or 180°7

the minima tend to decrease in magnitude as the vehicle gets closer to the
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destination. For _'s near 90 ° , the minima in the ranges 470 ° to 360 ° ,

360 ° to 180 °, and 180 ° to 0 ° are roughly equal, and the minimum in the

range 540 ° to 470 ° is somewhat higher than the other three. If FTA

guidance is to be used and if the predicted _ is near 0 ° or 180 °, an ap-

preciable amount of fuel can usually be saved by delaying the correction

until the point corresponding to the last minimum of c F has been reached.

When_ = 0 °, there is no singularity in c F at (f2 - fl } = 180° or 540 °.

This is due to the fact that in this special case, with 5 _D- stipulated to be

zero, 5r D lies in the reference trajectory plane; consequently, 5 z D is

equal to zero, and the out-of-plane singularities have no effect. Instead

of there being singularities at (f2 - fl ) = 180° and 540 °, a comparison of

Figure 4.5 with Figure 4.2 indicates that at each of these points c F is

equal to c V. The two are equal because at these points the noncritical

vector w is parallel to the z-axis; therefore, c V is the component of c F

in the reference trajectory plane. But since 5 z D is zero, c F itself lies

inthe reference trajectory plane, and consequently c F and c V are identical.

When _ = 0 °, the miss distance vector 5p lies in the reference tra-

jectory plane. If the position variation vector 5r D lies along the z-axis,

the miss distance vector is parallel to the _TD-axis , and _ = 90 °. Thus,

_'s in the vicinity of 0 ° or 180 ° are associated primarily with position

variations in the reference trajectory plane, while _'s close to 90 ° are

associated with position variations normal to the reference trajectory

plane. Additional insight into the guidance problem can be obtained by

studying the way in which a position variation either in or normal to the

reference trajectory plane affects the magnitude Of c V and c F. Figures

4.7 through 4. 11 present the results of such a study; 1/c V and 1/c F are

plotted for various orientations of a position variation 5r D whose mag-

nitude is 10 -4 a.u. or 9270 miles.

A link may be established between the curves that have already been

analyzed and the curves of Figures 4.7 through 4. 11. The _ = 90 ° curve

of Figure 4.2 is the same, except for a difference in the scale and the

dimensions of the ordinate, as the VTA curve of Figure 4. 7. The _ = 0 °

curve of Figure 4.2 would be the same as a curve for P2 = _D = 123° in

Figure 4.9 if such a curve were drawn; the _2 = 120° curve of 4.9 closely
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resembles the _ = 0 ° curve in 4.2. /i 2 is the angle between 5r 2 and the

P2-axis. The FTA curve for _ = 90 ° in Figure 4.5 bears a close similarity

to the FTA curve of Figure 4.7 for values of (f2 - fl ) between 0 ° and 360°;

at higher values of(f 2 -fl}thecurves are no longer similar. The reason that

these two curves are not completely equivalent, as is the case for their VTA

counterparts, is that in the curve of 4.5 the position variation to be corrected

is parallel to the ??D-axis, while in the curve of 4.7 the variation is parallel

to the zD-axis; the two axes are 13 ° apart. The in-plane singularity at

(f2 - fl } = 470° affects the.curve of Figure 4.5 but has no effect on the curve

of Figure 4.7. Finally, the ETA curve for _ = 0 ° in Figure 4.5 is quite

similar to the /I 2 = 120 ° curve in Figure 4. 1 i.

The curves of Figure 4.7 show that the maxima and minima of c V occur

at the same values of (f2 - fl ) as the maxima and minima of c F when 5r D

is parallel to the z-axis. At each of its maxima c F goes to infinity, while

c V goes to infinity at (f2 - fl } = 0° and 360 ° but reaches finite maxima at

(f2 - fl } = 180° and 540 ° . The minima of c V are not materially lower than

the corresponding minima of c F. The variation of I/c F with (f2 - fl ) is

periodic, repeating itself every 360 ° of (f2 - fl )" The periodicity becomes

appe_rent if k33, the only element in the correction matrix KCD that affects

z-axis motion, is written as follows:

k33 = rc rD sin(hD _ fc } {4-8}

The .variation of I/c v with (f2 - fl ) does not repeat itself exactly every

360 ° of (f2 - fl )due to the presence of the secular term in kll, which af-

fects w, which in turn affects c V. The fact that the FTA and VTA curves

are so close to each other is a manifestation of a point that has already

been made, namely that for this particular reference trajectory, with v R

being situated close to the reference trajectory plane, VTA guidance is

relatively ineffective in reducing the magnitude of the velocity correction

if 5r D is parallel to the z-axis.

Comparison of the VTA curves of Figures 4.8 and 4.9 with the FTA

curves of Figures 4.10 and 4. II indicates that VTA usually reduces the

magnitude of the required correction by an appreciable percentage if 5r 2

is in the reference trajectory plane. For any value of /_2' the VTA and
J
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FTA curves are tangent to each other at (f2 - fl ) = 180° and 540°; this is

due to the fact that the noncritical vector w is parallel to the z-axis at

these two values of(f2 - fl }" Bothc Vand c F go to infinity at (f2 - fl ) --

360 ° for all values of _2 except _2 = 90°" For the special case (f2 - fl ) =

360 ° and _2 = 90°' the VTA and FTA curves are tangent to each other at

a finite value of 1/c. Sections O. 4, O. 5, and O. 14 indicate the reason

for the absence of the singularity at (f2 - fl ) = 360° when _2 = 90°' i.e.,

when 5r 2 is parallel to v_2.

The really striking feature of the curves of Figures 4.7 to 4. 11 is

the large difference in magnitude between an optimum VTA correction of

a z-axis position variation and an optimum VTA correction of a position

varie_tion in the plane of the reference trajectory. To emphasize this

point, the VTA curve of Figure 4.7 has been added to Figures 4.8 and

4.9, and the FTA curve of Figure 4.7 has been added to Figures 4. I0

and 4.11. If only the range of (f2 - fl )between 0° and 180 ° is considered,

c V for a z-axis position variation is at least three to four times as
opt

large as c V for a position variation of the same magnitude that lies in
opt

the reference trajectory plane. For the optimum points at larger values

of (f2 - fl )' the ratio of out-of-plane c V to in-plane c V is at least
opt opt

as large and may be considerably larger, depending on the orientation of

5r_2 in the reference trajectory plane; when 5r 2 lies close to the q2-

axis, c V is much smaller than it is when 5 r 2- is close to the P2-axis.
opt

When FTA guidance is used, the disparity between out-of-plane c F
opt

and in-plane c F is significant but not nearly so great as in the VTA
opt

case. This is shown in Figures 4.10 and 4.11.

Figures 4. 12 through 4.17 illustrate the contrast between in-plane

motion and out-of-plane motion in a different way. The effect on 5r 2

and 5v 2 is shown for either a position variation of 927 miles = 10 -5 a.u.

at t 1 or a velocity variation of one foot per second at t 1. The most sig-

nificant curves from the guidance standpoint are the curves relating 6 r 2

to 5v 1 in Figures 4. 13 and 4.16. When 5V_l is parallel to the ql-axis,
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5r 2 is usually several times as large as it is when 5v 1 is parallel to the

Pl-axis; in turn, when 5v 1 is parallel to the Pl-axis, 5r 2 is usually

several times as large as it is when 5v 1 is parallel to the z-axis. If

the concept of "sensitivity" is introduced, it may be stated that the mag-

nitude of the position variation at the destination is most sensitive to a

velocity variation in the ql direction at time t 1, is less sensitive to a

velocity variation in the Pl direction, and is least sensitive to a velocity

variation in the z direction. Thus, for a given magnitude of 6 r 2 , the

magnitude of the optimum FTA correction is generally smallest if the

direction of the required correction is close to the qc-axis' larger if its

direction is close to the PC-axis, and largest of all if its direction is

close to the z-axis.

Figures 4. 13 and 4.16 also show the effect of an error in injection

velocity on position variation at the destination. For an injection velocity

error of 1 ft/sec, 5 r 2 is equal to almost 50,000 miles if the velocity

error is in the qI direction, about 5, 000 miles if the velocity error is in

the PI dir'ecti°n' and slightly less than 1,000 miles if the velocity error

is in the z direction. If the uncertainty in injection velocity is isotropic,

it is probable that the vector 5 r 2-, before the first midcourse correction,

will lie close to the reference trajectory plane.

It may be noted from Figure 4.16 that in this particular example the

time of actual injection is worse than any later time from the standpoint

of sensitivity of position variation at the destination to initial velocity

error. For aHohmann-type transfer, in which (fD - fI )is 180 ° , the sen-

sitivity to an injection velocity error in the qI direction would be less than

half of the value shown for (fD - fI } = 574°"

The effect of a position variation at t 1 on position variation at t 2 is

indicated in Figures 4.12 and 4.14. Again the sensitivity in the z direction

is very much less than the sensitivity in the p-q plane. This time, how-

ever, the Pl-axis is the most sensitive axis. A position error of one mile

in the PI direction at injection causes a position variation of forty miles at

the destination. For the qI and z directions the sensitivity factor is approxi-

mately one mile of position variation at t D per mile of position variation at

t I. The actual launch point at {fD - fI } = 574° has a sensitivity factor in the

critical Pl direction that is twice as large as the factor for a Hohmann trans-

fer.
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An isotropic distribution of the uncertainties in position and velocity

at injection is not the most desirable distribution. It is preferable to

design the injection guidance system in such a manner that the velocity

uncertainty in the direction of the velocity vector is minimized even if

this results in an increased velocity uncertainty along the other two axes

of the p q z coordinate system. In the case of position variation, the un-

certainty in the Pl direction should be reduced as much as possible.

-5
A position variation 6 r I of 10 a.u. produces an effect on 6 r 2 that

is of the same order of magnitude as a velocity variation 6v I of 1 ft/sec.

In the design of the injection guidance system it is relatively easy to keep
-5

the uncertainty in heliocentric position at injection below I0 a.u., but it

is virtually impossible to design a system in which the uncertainty in in-

jection velocity is as low as 1 ft/sec. Therefore, the curves relating

6r 2 to 6v I are of considerably greater importance to the guidance sys-

tem analyst than the curves relating 6 r 2 to 6 r I.

In the guidance concepts considered in this study, 6r D is the con-

trolled vector and hence is of paramount importance. The vector 6VD,

although not controlled, is monitored. It is of some interest, therefore,

to examine the effects of 6r I and 6v I on the magnitude of 6v 2. These

effects are shown in Figures 4.12, 4.13, 4.15, and 4.17. For 6 z I = 10 -5

a.u., the maximum magnitude of 6v is 0.57 ft/sec; for 6v = lft/sec,
z 2 z 1

the maximum magnitude of 6Vz2 is 1 ft/sec. When 6r I lies in the ref-

erence trajectory plane, its effect on 5v 2 is greatest if 5r I is close to

the Pl-axis, much smaller if 5r I is close to the ql-axis (but still con-

siderably larger than the effect of 5v ). The in-plane relationship be-
z 1

tween 5v I and 5v 2 is such that 5v 2 is most sensitive to a 5v I in-the ql

direction and much less sensitive to a 6v I in the Pl direction.

The shapes of the curves in Figure 4.14 are quite similar to the

shapes of the curves in Figure 4.15 for like orientations of 6rl; also,

the shapes of the curves in Figure 4. 16are similar to the shapes in

Figure 4.17 for like orientations of 5v I. Thus, in relating 5r I to either

5r 2 or 5v 2, the Pl direction is the critical direction; in relating 5v__1 to

either 5r 2 or 5v2, the ql direction is the critical direction.
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As in the case of the effects on 6r2, the effect on 6v 2 of a small error

in injection position in the critical Pl direction or a small error in injection

velocity in the critical qI direction is greater at the actual injection point

than at any subsequent point of the trajectory. For a Hohmann transfer the

sensitivity of 5v 2 to injection errors in the critical directions would be

halved.

To conclude this section, the effect on the magnitude of the required

VTA velocity correction of using a pre-programmed correction time rather

than one determined from the phase angle _/ will be investigated. The analy-

sis is based on consideration of a manned flight; therefore, only the range

of (f2 - fl ) between 0 ° and 180 ° is studied.

The pre-programmed t C can be chosen after an analysis of the curves

of Figure 4.2. The fact that 6r D is likely to be oriented close to the ref-

erence trajectory plane and the critical plane is inclined at an angle of 77 °

to the reference trajectory plane indicates that values of _/ close to 0 ° or

180 ° are more likely to occur than values in the vicinity of 90°; this sug-

gests that the curves for _/ = 0 °, I0 °, and 170 ° be favored in selecting a

fixed value of t C. On the other hand, if the unlikely does occur and _/ on

a particular flight is computed to be close to 90 °, the minimum correction

for a given 6p- is much larger than it would be if _/ were 0°; the pre-

selected tC should not have too adverse an effect on the magnitude of the

correction when _ = 90 ° Based on these considerations, a reasonable

compromise is to apply the midcourse correction at a t C corresponding

to (f2 " fl ) = 100°

The effect of the fixed correction time on the magnitude of the VTA

correction is shown in Table 4-I for four different _/'s. The effect is

most pronounced for _/ = 0 °, where the ratio of the correction at (f2 - fl ) =

i00 ° to c V is I. 82; for the other values of _/ in the table the ratio is
rain

less than 1.1. At _ = 90 ° c V is seven times the value at _ = 0°;
min

therefore, even though the ratio is only 1.08 at _ = 90 °, the numerical

increase in c V is sizeable.
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4.6 Concluding Remarks

The salient points of the analysis in the last section may be summarized

as follow s:

1. The method presented for determining the optimum time of application

of a VTA correction as a function of the phase angle of the miss distance vector

is practical.

2. The same set of curves (Figure 4.2)used to determine the optimum

correction time a posteriori can also be used alternatively for the determina-

tion of a pre-programmed correction time.

3. The variant motion along the z-axis is quantitatively quite different

from the variant motion in the reference trajectory plane. The state of the

vehicle at the time of arrival at the destination is relatively insensitive to

changes in state along the z-axis at the initial or midcourse points. Con-

versely, the midcourse velocity correction required to produce a specified

change in state along the z-axis at the time of arrival is relatively large.

4. The sensitivity of a Venus or Mars trajectory to a 1 ft/sec variation

in velocity at a given time is roughly equivalent to the sensitivity of the tra-

jectory to a 1,000 mile variation in position at the same time.

5. The sensitivity of the trajectory is greatest to that component of

,velocity variation which is parallel to the reference velocity vector and to

that component of position variation which is perpendicular to the reference

velocity vector and in the reference trajectory plane.

6. It is desirable to design the injection guidance system so that the un-

certainty in the magnitude of the injection velocity vector is reduced to a mini-

mum, even at the expense of some increase in the uncertainty of the direction

of the injection velocity vector.

7. Although position uncertainty at injection is far less critical than

velocity uncertainty, the injection guidance scheme is improved if the posi-

tion variation component in the direction normal to the injection velocity vec-

tor and in the reference trajectory plane is minimized.

8. For "wrap-around" trajectories, in which the total transfer angle is

greater than 360 °, the sensitivity to injection errors is considerably greater

than it is for Hohmann-type trajectories, in which the total transfer angle is

180 °
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CHAPTER 5

NAVIGATION THEORY

5.1 Summary

The method of determining the space vehicle's variant path from

measurements made during the voyage is developed. Earth-based radio-

command and on-board self-contained measurement techniques are dis-

cussed. In both techniques there are redundant data which are processed

Statistically to obtain an estimate of the variant path.

In the radio-command system the variant path is estimated di-

rectly from the observed data. In the self-contained system there is

an intermediate step; the vehicle's position is estimated from a set of

simultaneous measurements, and the variant path is estimated after

several position determinations, made at different times, have been

obtained.

For the specific self-contained system in which the measured

quantities are the angles betweenthe lines of sight to pairs of celestial

bodies, a simple method is proposed for selecting the stars to be used

in the sightings.

5.2 Introduction

In the guidance theory of Chapters 2 and 3 it is assumed that the

vehicle's variant path is already known. The present chapter describes

methods of determining the variant path from observed data; this deter-

mination is the objective of navigation theory. The chapter is primarily a

review of previously proposed techniques for obtaining and processing

measurements, with the addition of several suggested new features. It

rounds out the analytic study of the midcourse guidance problem.

The number of indpendent measurements usually exceeds six, the

number of parameters required to define the variant path. All measure-

ments are subject to uncertainties and possibly to fixed biases as well.

To estimate the parameters of the variant path from redundant measure-

ments containing uncertainties, the method of maximum likelihood is

used. The mathematical development of the method appears in Appendix P.
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It is assumed that the distribution of the uncertainty in each measure-
ment is normal with zero mean. The variance of each measurement is

assumed to be knowna priori.

Computations are based not on the observed value of each measured

quantity but rather on the difference between the observed value and a

pre-computed reference value. Since the difference is assumed to be

small, linear theory is applicable.

The two types of navigation systems to be discussed are the Earth-

based radio-command system developed by the Jet Propulsion Laboratory

(JPL) at California Institute of Technology and the self-contained optical

system of the M. I. T. Instrumentation Laboratory.

5.3 Earth-Based Radio-Command System

A general description of the Earth-based navigation system is pre-

sented in Reference (11). A detailed explanation of the method of com-

puting the variant path appears in Reference (33).

Radio signals transmitted from the vehicle are received by a tracking

station on Earth. To provide line-of-sight tracking of the vehicle at all

tim'es, three such stations are required. The observed quantities are the

azimuth and elevation of the line of sight relative to the tracking station,

range rate, and possibly range. Repeated measurements of any combina-

tion of these quantities are processed on a centrally located Earth-based

computer by use of the method of maximum likelihood.

Many measurements can be made relatively easily during the early

phase of an outbound interplanetary voyage. For this phase the two-body

mathematical model does not accurately represent the physical situation;

therefore, the more elaborate n-body model of Chapter 2, with the effect

of earth oblateness included, is used.

In Reference (33) the solution for the variant path is obtained in terms

of the six components of 6x I, the state vector at the time of injection. The

selection of 5x I to define the variant path is motivated physically by the

fact that, before any midcourse corrections are applied, the variations of

the observed quantities from their reference values are due primarily to

the variations in position and velocity at injection. However, it has been
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shown in Chapter 2 that the really significant state vector for guidance

analysis is not 5x I but rather 5XD, the state vector at the nominal time

of arrival at the destination. With a caret superscript used to designate

the maximum likelihood (ML} estimate of a quantity, the estimate of

5x D is related to the estimate of 5x I by the equation

5XAD _DI 5AXI (5-1}

The tracking and orbit determination functions are sub-divisions of

the larger problem of vehicle guidance. It would therefore be appropriate

to solve the likelihood equations directly for an estimate of 5XD, without

going through the intermediate step of estimating 5x I. An outline of the

mathematical development of the modification of the JPL system being

suggested here is presented in the next section of this chapter.

In addition to the components of the state vector 5xi, the JPL com-

putation yields estimates of the fixed bias of each type of measurement

made at each tracking station. An iterative procedure is used to refine

the estimates of the state vector and the biases beyond the results that

are obtained from a single solution of the linearized equations.

The Earth-based navigation system makes use of virtually continuous

computation_roughout the period during which the vehicle is being tracked.

According to Reference (10), measurements are made every ten seconds,

so that in a tracking period of ten hours 3600 sets of input data are fed

into the computer. The computer facility required is large, far beyond

that which could be carried in any space vehicle. The fundamental ad-

vantage of this system is that it utilizes such a large volume of input data

that, even if the individual measurements have fairly high uncertainties,

the uncertainty in the estimated state vector, from which the velocity cor-

rection is computed, is quite low.

The system shows to best advantage when the vehicle is close to

Earth. As the distance from Earth increases, the signal-to-noise ratio

of the radio signals transmitted from vehicle to tracking station is re-

duced, with a consequent increase in the uncertainty of the measurements.

In addition, the sensitivity of the predicted state vector to errors in angu-

lar measurements increases linearly with distance of vehicle from station.
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The radio-command system is most useful in accurately determining when

and how to apply the first midcourse correction on an outbound journey from
Earth to another planet.

5.4 Estimate of the State Vector from Earth-Based Measurements

In this simplified analysis it will be assumed that the measurements are

unbiased, and consequently the likelihood equations are to be solved only for
A

the components of 5x D.

At time t S a set of measurements is obtained. The R-th type of measure-

ment made at t S is designated mSR. The variation of the actual measurement

from its reference value is 5 mSR. This variation is a linear function of the

components of the state vector 6x S.

T
5mSR =PsR 5Xs (5-2)

RSR is a six-component vector whose elements are the partial derivatives

of mSR with respect to the components of x S. Analytic expressions for the

partial derivatives used by JPL are listed in Appendix A of Reference (33).

6mSR can be related to 5x D by means of the transition matrix.

T* T
6mSR =PsR CSD 6XD = qSR 6XD (5-3)

where

T T *
ClsR = PSR CSD (5-4)

The method of computing the elements of CSD by numerical integration is

described in Section 2.10.

If K different'types of measurement are made at t S, the K measure-

ment variations can be combined in a vector designated 6 ms_
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5m S

5ms1

t

5 ruSK
1

T
qs1

T
qSK

* T
= QS 6XD (5-5)

where

* T
Qs

T
qSl

T
_SK

(5-6)

Finally, if measurements have been made at times extending from

to tL, the total measurement variation vector 6 m is defined as follows:

flil °5m---I Q1

5m = • = . 5x D = T 6x D (5-7)

6m L " T

where

T

* T
Q1

(5-8)

_T.
is an M-by-6 matrix, where M is the total number of individual measure-

ments being processed.

A superscript tilde will be used to indicate the observed measurement,

as distinguished from the true value of the observed quantity. The difference

between the two is the random measurement error u, which is normally dis-

tributed with zero mean and known standard deviation. For a:[1 M measure-

ments,

5m = 5m +u (5-9)
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The covariance matrix of the uncertainty vector u is defined as

* , T
U=U u (5-1o)

A bar over a quantity signifies the average value of the quantity. U is a

symmetrical M-by-M matrix.

The estimated state vector 6_ D is computed from Q, U, and 6_m by

the use of Equation (P-20).

*" *-I_T)-I * _-1 ""5 D=(QU Q 5m (5-11)

If the error E_D in the estimate is defined by

e_D= 6AXD- 5x D

the covariance matrix E D of [D is obtained from Equation (P-25).

(5-12)

* T * * - 1 _T)- 1E D = e_D e_ D = (Q U (5-13)

The uncertainties in the individual measurements are assumed to be

uncorrelated. Therefore, for measurements m i and m.,
J

= 5ij (_i 2 (5-14)U i uj

where 5i_j is the Kronecker delta and ai2 is the variance of u i. Then U is
2

a diagonal matrix, the non-zero element in the k-th row being c¢k , and

_-I __U is also a diagonal matrix with being the non-zero element in its

a k

k-th row. When all uncertainties are uncorrelated, the maximum likeli-

hood estimate is the same as the least squares estimate.

__
The matrix Q U 1 _T which must be inverted in order to solve for

2k

6_ D, is a symmetrical 6-by-6 matrix. This inversion is the most time-

consuming operation in the computation process; it must be performed

every time a new estimate is calculated from (5-11).

5.5 Self-Contained Optical System

The self-contained optical system for space navigation that is dis-

cussed in this section is the one that is described in Reference (5). The
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mathematical development is given in Appendix B of that reference and

also in Reference (3).

The first step in the procedure is the estimation of vehicle position

relative to the reference trajectory at some specified time t S. Position is

estimated by making a set of measurements of the angles between the lines

of sight to pairs of celestial bodies; all measurements are made within a

short time interval centered at t S. When more than three such measure-

ments are made in the interval, the maximum likelihood technique is used

to compute the estimated position variation 6_S and the estimated clock
r_

error 6 t S.

For each angular measurement at least one of the two celestial bodies

involved must be a "near" body, i.e., one whose motion relative to the space

vehicle is significant. The near bodies are confined to the solar system;

either the sun or one of the planets is usually used. The second body in-

volved in the measurement may be a "far" body (i. e., a star other than

the sun), or it may be another near body.

The position estimation procedure is repeated for a number of differ-

ent values of t S during the flight. The final phase of the computation is

the determination by means of maximum likelihood of 5_D from the esti-

mates of 6r that haveetready been obtained.

The assumption is made that all angular measurements have zero

bias. The uncertainty in each measurement is normally distributed with

zero mean and known standard deviation.

When the self-contained system is compared with the Earth-based

system, the following differences are noted:

1. All measurements in the self-contained System are of the same

type; they are optical measurements of celestial angles. Measurements

in the Earth-based system are of several types, including angular meas-

urements, doppler measurement of range rate, and measurement of range.

2. Each on-board angular measurement requires an appreciable

amount of time for adjustment of the two telescopes involved. The Earth-

based tracking system allows measurements to be made very quickly.
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3. The frequency of measurements is very much smaller for the self-

contained system; the number of position determinations is limited by the

capacity of the on-board computer. Since the Earth-based measurements'

are linked to a computer of large capacity, large numbers of measure-

ments can be effectively processed.

4. The error in the measurement of time, if uncorrected, can be

significant in the self-contained system; it is negligible in the Earth-

based system.

5. The self-contained navigation system uses a two-step computation:

first, position variation and clock error are determined; then 6£D is

determined. The Earth-based system computes 6_ D directly.

6. The accuracy obtainable from the self-contained system is im-

proved when the vehicle is close to any planet. The accuracy of the

Earth-based measurements depends on the vehicle's distance from Earth.

7. In the self-contained system the designer has the problem of

selecting the angles to be measured at each measurement time. There

are usually several near bodies that can be used, and there are always

many bright stars from which a selection can be made. By contrast,

there is no problem of selection in the Earth-based system. The types

of measurement are limited, the number of tracking stations from which

the vehicle is visible is limited, and the space vehicle is the only object

being tracked.

5.6 The Effect of Clock Error

Some justification is required for the two-step computation procedure

called for in the self-contained system, as opposed to the single-step pro-

cedure in the Earth-based system. If the angular measurements were all

made at times that were known accurately, all the data could be processed

together to determine 6XAD directly. Unfortunately the times of the meas-

urements are not known accurately in the self-contained system, because

the space vehicle's clock is itself subject to error. The maximum likeli-

hood method is incapable of distinguishing a clock error from a variation

in the trajectory parameters if the single-step computation is used, This

problem is not present in the Earth-based system, because in that system

the clock error is negligibly small.
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When four or more angular measurements are made at the nominal

time tS, the solution of the resulting likelihood equations yields an esti-
mate of the clock error 5t S as well as an estimate of the position varia-

tion 5_S. Thus, the celestial bodies are used to determine the correct
time. After every set of angular measurements has been completed and

processed, a correction of 5t S seconds is applied to the vehicle's clock.

Two simple examples serve to illustrate the inability of the computer

to detect a clock error when all the angular measurements are processed

together. The first is the case in which the clock has a fixed bias; assume

that it is 5t S seconds slow. Then every measurement is made at a later
time than it is supposed to be, and the vehicle appears to be farther along

the path than it should be. The computer interprets this situation as a

variation in tO, the time of perihelion passage. 5t 0 is computed to be the

negative of 5iS; that is, the trajectory appears to be such that the vehicle

passed through perihelion 5tS seconds early. The computed FTA correc-
tion retards the motionso that the vehicle arrives at the destination at

the correct time accoi_ding to its clock, but actually 5t S seconds late.

The second example is that in which the vehicle's clock has a constant

drift rate; assume that the clock reads correctly at injection and loses j

days per day thereafter. The interval between the actual time of an angular

measurement and the apparent time of the measurement gets progressively

longer; a measurement apparently made tS days after injection is actually

made [(1 + J)ts] days after injection. The computer interprets the data as
indicating that the period of the actual trajectory is smaller than the ref-

erence period. The computed FTA correction increases the period so that

the vehicle arrives at its destination at the correct time according to its

clock, but actually [j (tD - ti) ] seconds late, where (tD- t i) is expressed
in seconds.

In general, a consistent clock error for which the clock reading will be

tD when the correct time is (tD + 5t D) results in a computation that causes

the vehicle to reach the destination at (tD + 5t D) if FTA guidance is used.
At time tD

point is

where XR

the vehicle's position variatfon relative to the moving destination

(SrD) R = -XR 5t D (5-15)

is the velocity of the vehicle relative to the destination planet.
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When VTA guidance is used, a consistent clock error (either a fixed

bias or a constant drift rate} requires no velocity correction. The vehicle

achieves the objective of reaching the destination even though the time of

arrival is not known accurately. If the clock is subject to random fluctua-

tions, a velocity correction is computed even by the VTA system.

As a numerical illustration, consider a mission whose duration is
200 days, a clock whose drift rate is one second per day (roughly 10-5),

and a relative velocity vector whose magnitude is 3 mi/sec. When t is

actually equal to tD, the clock error is 200 seconds. With FTA guidance

the magnitude of(SrD) R is 200 k 3 = 600 miles; with VTA guidance no cor-

rections are applied, and the magnitude of the miss distance is zero.

It is apparent that the effect of an unknown clock error is reduced

considerably by the VTA system. However, the two-step computation

procedure is still felt to be justified for two reasons. First, even when

it is permissible to vary the time of arrival, it is desirable on most

missions to be able to predict accurately what that time will be; secondly,

in the usual case the clock fluctuation is random, and some fuel will be

expended unnecessarily for VTA corrections if the one-step procedure

is used.

There is one final reason for the development of the two-step compu-

tation. In the event of a partial computer failure on a manned mission,

despite the fact that the elaborate timing mechanism associated with the

computer is inoperative, it may still be possible to navigate adequately

with more conventional and simpler timepieces if the two-step procedure

is utilized.

5.7 Estimate of the State Vector from Optical Measurements

The first step in the two-step computation is the determination of the

position variation 5r S at nominal time t S from angular measurements

made in a short time interval centered at t S. The variation 6AsR of the

R-th angle measurement made at t S from its reference value is assumed

to be a linear function of the position variation 5r S and the clock error

6t S.
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T
6AsR--gSR 6Ss (5-16)

where
t S

5s S =' (5-17)

L6 sJ

and gSR is a four-component vector composed of the partial derivatives of

ASR with respect to 6t S and the components of 5r S. Analytic expressions

for the partial derivatives are developed in Reference (3).

The number of angles measured at t S is K. Obviously, all these meas-

urements.cannot be made simultaneously, so that the angle ASR is actually

measured at time (t S + 6tSR). The time increment 6tSR is small and can

be adcurately recorded. The observed value 5_ _ used in the computation
Sit N

is compensated for the effect of 5tSR; therefore, 6 ASR is the "effective"

angle variation that would have been observed if the measurement had taken

place when the space vehicle's clock read tS.

The measurement variation vector 5 m S consists of the variation in the

clock reading in addition to the variations in the K angular measurements.

where

S' =Os

I AS J

* T
G S

T
gso

= gSl T

L"• T

gSK

(5-19)
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and

gSO =

1

0

0

0

(5-20)

The observed measurement vector 5m S , the true measurement vector

5 m, and the uncertainty vector u S are related by the equation

5m S = 5m S +u S (5-21)

In component form,

m

0

5As1

5 ASK

6 t S Us 0

5As1 + Us1

: 'j5 ASK uSK

The "observed" value of 5t S is zero.

ment is designated Us0.

(5-22).

The uncertainty in the time measure-

The covariance matrix of the uncertainty vector is

US u S Us T (5-23)

Since the uncertainties in all the measurements are assumed to be indepen-
* * -1

dent with zero mean, U S is a diagonal matrix, and so is U S .

Then the ML estimate of the vector 5s S is

" = :_ $ -1 _._ 1 :_ :_" - ""

6s S = 6rsJ (G S US GS US 1 6m__s (5-24)
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Vector 6_ S is an "inferred measurement" vector. Note that the inferred

measurement of 6t S is not zero, even though the observed measurement

is. The correction 6"[ S is applied to the clock.

The error vector -_S is the difference between the inferred measured

vector and the true measurement vector.

or

-_S = 5-Ss- 6-SS (5-25)

6ZSJ 6rs

(5-26)

The covariance matrix of _S is

* -i x_ -I
_S _S T = (Gs US GS T) (5-2"/)

The variance in the inferred estimate of clock error is

hand element of _-S _-ST "

the upper left-

In order to solve (5-24)for 5_S, it is necessary to know the variances

in the uncertainties of all measurements comprising 5m S. For the angular

measurements these variances are known a priori. For the clock measure-

ment Reference (3) suggests a simple yet effective model that can be used to

,

determine Us0

Clock errors are important, only during those short time intervals when

measurements are being made or a velocity correction is being applied. It

is therefore reasonable to assume that the clock has a constant drift rate

between measurement time t S _ 1 and measurement time t S. The variance
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.

2 which is known_a priori. Then Uso is given byof this drift rate is ac

2 2 )2 + PS 12 (5-28)Uso = ac (ts - ts - 1

2
The recursive operation is started by stating that at injection ui0 is known

a priori.

The inferred measurements to be used in the determination of 6AXD are

the components of 5_S. The covariance matrix of the uncertainties in 5__ S

is

T{ 100tBS = J_S J_S = 0 1 0

0 0 1

* * -1 * T -1
(G S U S G S ) °°° 1

1 0 0

0 1 0

0 0 1

(5-29)

The second major step in the two-step method can now be carried out.

At each of L measurement times an inferred position variation vector is

obtained, and for each of these vectors the corresponding moment matrix

is computed. The equation

_J

5m-- 5m +u (5-30)

now takes the form

f T. I:___.J ___,,j _
(5-31)

The uncertainty in the inferred measurement vector 5_S is assumed to be

uncorrelated with the uncertainties in the other inferred measurement vec-

tors. The covariance matrix U, which is again defined as u u T, is a
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diagonal matrix of 3-by-3 sub-matrices.
$ $ 1

shown below for U andU-when L = 3.

is obvious.

U

F
L

B 1 0 3

0 3 B 2

O 3 O 3

This is illustrated by the equations

The extension to higher values of L

O 3

O 3 (5-325

B 1 0 3 0 3

* -1
0 3 B 2

0 3 0 3

_C

O 3

B 3 _

(5-335

5_r.s is related to 6x D by the equation

6r S =

The 3-by-3 matrices MSD

CSD; they are explained in Section 2.7.

{* *}MSD NSD 5x D (5-345

and NSD are sub-matrices of the transition matrix

Then

5m = _T 6X D (5-355

where

M 1D N 1D

b •

• D

MLD NLD

* * ,-o

Withthese definitions of Q, U, and 6m, the ML estimate of 6x D

form as (5- 115.

(5-365

has the same

W)- ~* *-1 1 1 6m=(QU (5-37)
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The error [D in the estimate and the covariance matrix E D are given by

Equations (5- 12) and (5- 13), respectively•

5.8 The Initial Estimate

An improvement in the estimate of the variant path of the vehicle can

be achieved by regarding as additional measurements the design value of the

state vector at injection. This suggestion has been made in References (12)

and (33).

The "pseudo-measurement" of the injection state vector is

6x : o6 (5-38)

This is the vector that would be achieved if there were no errors in the in-

jection guidance system. Because such errors do exist, the actual vector

6xIi s not the zero vector. The injection error vector e__I is defined as

e_.I = 6_i- 6Xl (5-39).

The corresponding covariance matrix is

* T
U I = e__I e_i (5-4O)

The elements of U I are assumed to be known a priori from the characteristics

of the injection guidance system.

,

6x I is related to 6x D by the transition matrix CID.

6x I : CH) 6x D (5-41)

To incorporate 6_, I into the computation for the ML estimate of 6x D,
the definitions of _T, U, and 6_n must be modified. The new _T is given by

CID

Q1T

_L T"

(5-42)
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The new covariance matrix is

U _

UI 06 XM

(5-43)

# $-

OM X 6 UM X M

where/U M X M is the original covariance matrix, obtained from the M

measurements. It is assumed in (5-43) that uncertainties associated with

the injection guidance system are uncorrelated with the later measure-

ments. Finally, the new observed measurement variation vector is

6m =

r6_ I

5m L

-0 6

6rn 1 (5-44)

With these definitions Equation (5-11)can be solved for an improved esti-

mate of 6x D.

5.9 The Estimate Immediately Following a Midcourse Correction

Whenever a midcourse correction is applied, 6x D is changed. Sub-

sequent measurements are used to estimate the new 6x D. The concept

of the initial estimate, as developed in the proceding section, can be

adapted to provide a more accurate estimate of the new 6x D.

On the basis of measurements made prior to the correction time tc,

an estimate is obtained for the uncorrected 6x D, which is designated

6XD-. The uncorrected state vector at the time of correction is 6x C .

6x C = CCD 6x D (5-45)
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Immediately after the correction c is applied, the new state vector is

6x C = 6x C + (5-46)

+

= CCD 5x D (5-4"/)

6XD + is the new state vector for which an estimate is required.where

c is the velocity correction actually applied. Because of instrumenta-

tion inaccuracy it differs from c, the "observed" or desired correction.

The difference between the two is designated 17"

7; = C -- C (5-48)

The "observed" value of 6Xc+ is

6x C = 6__C- + (5-49)

The error in the observed value is

+ _, + +

u C = 6x C - 6Xc

c_

-{03tic + (5-5o)

where

* 6A__XD (5-51)6A_Xc = CCD

and

e_.c = CCD !D- (5-52)
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The covariance matrix of _C is

- _ -)T * _ - _ TEC- = (£C) (c C = CCD E D CCD (5-53)

The covariance matrix of Uc + is

+

U C =(Uc +) (Uc+) T

= EC + O6 X 3

0 3 0 3

* 7/T03 3-

(5-54)
+

To evaluate U C , it is necessary to formulate a model of the control system

used to apply the midcourse correction and to analyze the errors in the con- -

templated system. One such analysis is given in Reference (13).

Equation (5-11)is used to solve for 6_D+_ when the following are used

for _T, *U, and 6_,:

CCD

Q1T

T

(5-55)

U
UC+

OM X6

06×M

UM XM

(5-56)
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+

i
5rnL _

The M measurements referred to in these equations are the measurements

made subsequent to the correction at t = t C.
+

The inclusion of the initial observation vector 6_C in the determina-
÷

tion of 5_D_ enables all the observations made since injection to be utilized.

It therefore has a much more significant effect on the accuracy of estima-

tion than the inclusion of the initial estimate 5x I has.

5. 10 Physical Considerations in the Selection of Optical Sightings

It has been pointed out in Section 5.5 that the designer of a self-

contained navigation system has the problem of determining which angles

should be measured at each measurement time t S in order to determine

the position variation 6r S. Battin (6) has developed the mathematics for

optimizing a set of three angular measurements, from which position is

determined uniquely under the asspmption that the clock error can be neg-

lected. The analysis in this section is concerned with the optimization of

a redundant set of angular measurements; the emphasis is on physical

reasoning rather than mathematical rigor.

For the purpose of selecting the sightings, it is justifiable to simplify

the problem by neglecting clock error. It is unlikely that the relatively

small effect of the clock error on 5r S can affect the selection, and neg'

lecting this effect simplifies the analysis considerably. With this assump-

tion, Equation (5-18) becomes

5m S =

5 AS1

5 ASK

= GS T 6r S (5-58)
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where

T

_S T =

T
gSK

(5-59)

K is greater than 3.

For a sightingoftheangle between the line of sight to a near body and

the line of sight to a star, a mathematical expression for the vector gSR

can readily be derived from Figure 5-1. At time t S the reference position

of the planet is X; its actual position is X'. The position of the near body

is P; its distance from X is Zp. The line of sight to the star from X is

XY; from X' it is X'Y'. Since the star's distance is assumed to be in-

finite, XY and X'Y' are parallel. The reference value of the angle to be

measured is

ASR = <_PXY (5-60)

The actual angle measured is

ASR =_PX' Y' (5-61)

The difference between the two is 6 ASR.

5AsR = ASR - ASR (5-62)

Unit vectors mp and mQ lie along the lines from X to P and from

X to the star, respectively. The unit vector.np is normal to m p and in

the plane containing mp and mQ.

np- sin ASR1 (mQ -mp cos ASR) (5-63)
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P

_A
SR

._--y

X

X I -

p-

XY, X'Y' -

ASR =

ASR' =

6 ASR =

6r S -

mp-

vehicle's reference position

vehicle's actual position

position of near body

line of sight to star

<_ PXY = reference value of angle to be measured

<_ PX'Y' = actual angle to be measured

ASR' - ASR

position variation of vehicle at time t S

unit vector along nominal line of sight from vehicle to
near body

unit vector along nominal line of sight from vehicle to star

unit vector normal to nominal line of sight from vehicle to
near body

Figure 5.1 Geometry of Angular Measurement
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From the figure it is apparent that 6 ASR is related to the component

of 6r S parallel to np.

T
Zp 5AsR =np 5r S (5-64)

Then

np (5-65)
gSR - Zp

The error in the computed component of 5r_s caused by an error uSR

in the observation of 5 ASR is directly proportional to Zp. Thus, to mini-

mize the error in the computed value Of 5rs, it is desirable to sight on

the nearest of the near bodies in several of the measurements.

The plane containing the two lines of sight for a particular angular

measurement will be designated the "measurement plane." If two stars

are chosen such that the measurement plane of the angle between the

nearest body and the first star is perpendicular to the measurement plane

of the angle between the nearest body and the second star, two orthogonal

components of 5r S can be determined, both components lying in the plane

normal to ._rap.

There still remains the problem of finding the component of 5r S par-

allel to mp. This component cannot be found by measuring the angle be-

tween __rap and the line of sight to any star. It is possible to make an esti-

mate of (mp T 5r S) by measuring the angular diameter of the nearest body,

but this measurement has little practical value in the midcourse phase of

the flight, when the distance of the nearest planet from the vehicle is at

least of the order of hundreds of planet diameters. Thus, at least one

angular measurement involving another near body is required.

It would be ideal if there were a second near body whose distance

from the vehicle is not much greater than that of the nearest body and

whose line of sight is perpendicular to the line of sight to the nearest

body. Then an angular measurement between the lines of sight to the

second body and a star can be made such that the component of 5r S along

the line of sight to the nearest body can be determined. In practice this

ideal is seldom, if ever, achieved. As a consequence, the third angular

measurement gives the component of 5r S in a direction different from
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mp. After three measurements have been made, there is greater un-

certainty about the component of 5r S along mp than there is about the

components of 5r S in the plane perpendicular to mp. The first objec-

tive of the redundant measurements is to reduce the uncertainty in the

component of 5r S along mp.

The near bodies for an interplanetary journey consist of the sun and

the inner planets Mercury, Venus, Earth, and Mars. When the vehicle

is not too distant from Earth, the moon may also be used. The fact that

all the inner planets as well as the moon move in orbits that are inclined

by only a few degrees to the ecliptic can be used to advantage in the selec-

tion of sightings, for, from considerations of energy required for injec-

tion into a heliocentric orbit, the vehicle's orbital plane is also close to

the ecliptic.

A measurement of the angle between a near body and a star whose

line of sight is inclined only slightly to the ecliptic plane (and hence in-

clined only slightly to the reference trajectory plane} leads to an estimate

of a component of 6r S which is roughly in the reference trajectory plane.

Another measurement, involving a second near body and the same star,

yields an estimate of the component of 5r S in some other direction, also

close to the reference trajectory plane. Additional measurements, be-

tween additional near bodies and the same star or between pairs of near

bodies, refine the accuracy of the estimate of position variation in the

reference trajectory plane.

To estimate position variation normal to the reference trajectory

plane, a measurement is made of the angle between a near body and a

star whose line of sight is normal tothe reference trajectory plane, if

a star of sufficient brightness for good visibility can be found in this

direction. Additional measurements between other near bodies and the

same star reduce the uncertainty in the estimate of position variation

normal to the reference trajectory plane.

The measurement selection procedure being suggested is in reality

another exploitation of the condition that was used to advantage in the

guidance analysis of Chapter 3, namely that characteristics associated

with the reference trajectory plane are virtually uncoupled from char-

acteristics normal to that plane.
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It has beenmentioned that angular sightings between two near bodies

may be used in addition to near body-star sightings to improve the esti-

mate of position variation in the reference trajectory plane. Equations

(5-64) and (5-65)are not applicable to this type of measurement. If the

nearest body is P, at distance Zp from the vehicle, and if the other near

body is Q, at distance ZQ from the vehicle, Equation (2-5)of Reference

(3) indicates that, when clock errors are neglected,

Thus

5 ASR
np nQ )+ -- . 5r S (5-66}
Zp ZQ -

np nQ

gSR = Zp + ZQ (5-67)

where n p is defined by Equation ( 5- 62), and correspondingly,

1

-_Q - sin ASR (___rap- _ cos ASR) (5-68)

_vleasuring Lne ang±e between two near bodies yields an estimate of the

component of 5r S in a direction which is the weighted average of the nor-

reals to the lines of sight to the two bodies, the weighting being inversely

proportional to the distance of the body from the vehicle.

The sensitivity factor S will be defined as the error in the relevant

component of 6r S caused by a unit error in the measurement of ASR.

S is the reciprocal of the magnitude of _SR" For a near body-star meas-

urement,

S = Zp (5- 69)

For a measurement between two near bodies, the law of cosines is used

to show that

S - Zp ZQ
d (5-70)

where d is the distance of Q from P.
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It is obviously desirable to keep S as low as possible. Equations
(5-69) and (5-70) indicate that the value of S for a measurement between

two near bodies is smaller that the value of S for a near body-star meas-

urement only when the distance of Q from the vehicle is less than the

distance of Q from P. This sensitivity criterion applies only to the mag-

nitude of the inferred position error. It is occasionally desirable to use

a measurement with a higher S in order to obtain an estimate of 6r S in a

direction in which the uncertainty is relatively high.

5, 11 Mathematical Criterion for the Selection of Optical Sightings

A useful mathematical criterion for selecting a redundant number of

angular measurements for position determination is the minimization of

the volume of the equi-probability ellipsoid, subject to the constraint

that the three axes of the ellipsoid be kept approximately equal in length.

The concept of the equi-probability ellipsoid is discussed in Appen-

dix P. The equation for the ellipsoid corresponding to measurements

made at time t S is the quadratic form

_S w BS 1]_S = k2 (5-71)

where k is a constant. The center of the ellipsoid is at the point

-_S = 03 (5-72)

The volume of the ellipsoid is

v =4 k3 , 1/2IBsl
i |* *

where [Bs[ is the determinant of the covariance matrix B S •

For any specified value of k, the probability that the error vector

J_S will lie totally within the ellipsoid is a constant. Thus it is desirable

to reduce the volume of the ellipsoid for the given k, and this can be ac-

complished only by reducing [ _S[ " Maintaining the axes of the ellipsoid

roughly equal in length ensures that the reduction in volume is not achieved

by means of a reduction in uncertainty in one direction at the expense of a

relatively large uncertainty in another direction.
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Since clock errors are being neglected,

= 5s 1 sTl-1 (5-74)

If it is assumed that the standard deviation of the uncertainty in each of

the K angular measurements is or,

* -I 1 *
U S = _ IK (5-75)

(y

Then,

_S = (_2 (Gs GS T)-I (5-76)

* a2Reducing the determinant of B_ for a given is equivalent to increasing
* * W "*

the determinant of (G S G s ). G s is a 3-by-K matrix.

GS = S 1 " ° "

K

:
R=I

(5-77)

(5-78)

It is convenient to express the components of the gS vectors in one

of the reference trajectory coordinate systems of Appendix A. In any of

these systems the third component of gs is zero for an in-plane meas-

urement (a measurement of the angle between two lines of sight, both of

which lie in the reference trajectory plane). For an out-of-plane meas-

urement (one in which the angle measured is between the line of sight to

a near body in the reference trajectory plane and the line of sight to a

star normal to the reference trajectory plane), the first two components

of gs are zero.

If several measurements of each of the two types are made, the re-

* ST )suiting matrix (G S G has the same uncoupled feature as all of the

matrices of Chapter 3; that is, the first two elements of the third row

and the first two elements of the third column are all zero. In practice
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this condition cannot be achieved precisely, because the lines of sight to

the celestial bodies used in the measurements do not lie exactly in or

perpendicular to the reference trajectory plane. Moreover, if the lines

of sight to two near bodies are roughly perpendicular to each other, the

* S T )in-plane measurements can be so chosen that (G S G closely resembles

a diagonal matrix.

The procedure to be used in selecting measurements is straight-

forward. If six angles are to be used, four will be in-plane and two out-

of-plane. Let P, Q, and R represent three near bodies in order of in-

creasing distance from the vehicle. Let B 1 and B 2 be "in-plane" stars,

and let C 1 and C 2 be "out-of_plane" stars, the line of sight to C 1 being

closer to the normal to the reference trajectory plane than the line of

sight to C 2.

The first two measurements are the obvious ones. P and B 1 are

used for an in-plane measurement, and P and C 1 are used for an out-of-

plane measurement. These two provide estimates of the components of

6r S in the plane normal to the line of sight from the vehicle to P. Next,

a second out-of-plane measurement can be made; this involves either P

and C 2 or Q and C1, whichever combination gives the larger value of the
* * W

lower right-hand element of (G S G S ).

The remaining three in-plane measurements depend on the positions

of Q and R relative to P and the vehicle. The primary problem is to ob-

tain a reasonably accurate estimate of the component of 6r S along the line

of sight to P. The pairs of bodies used in the measurements are normally

chosen from among the following:

1. P and Q

2. Q and B 1

3. Q and R

4. Q and B 2

5. R and B 1

6. P and R

Those three are chosen for which the diagonal elements of the resulting

2-by-2 sub-matrix of (Gs_ _Gs T) are most nearly equal. A simple graphical

method of making the selection is discussed in Section 5.13.
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It may be noted that six distinctly different angles are measured even

though theoretically greater accuracy can be obtained by repeating some

of the original measurements. The reason for using all different angles

is to minimize the effect of any unknown non-random errors in the instru-

mentation system.

5.12 Survey of First Magnitude Stars

The optical system for acquiring and tracking celestial bodies is

simplified if only the relatively bright bodies are used for the angular

measurements. The apparent brightness of the other planets as seen

from Earth varies with time, but all those that are to be used as "near

bodies" (except Mars during a short portion of its cycle relative to Earth}

are at least as bright as first-magnitude stars. Jupiter and Saturn, al-

though they are not used as near bodies, are also at least as bright as

first-magnitude stars. The variations in planet brightness are illustrated

in the chart on Pages 34 and 35 of Reference (34}. A discussion of the

meaning of the "magnitude" of a star may be found in Reference (35),

Pages 329 et seq.

There are 22 stars whose brightness as seen from the solar system

is greater than that of a star with apparent visual magnitude of 1.5. These

stars have been investigated to determine which, if any, are suitable as

"in-plane" stars and which are suitable as "out-of-plane" stars. The re-

sulting data are contained in Table 5-1. The stars are listed in order of

decreasing brightness. The order and the apparent visual magnitude are

taken from Table 11. II of Reference (35}.

The computed data for each star consist of celestial longitude, celestial

latitude, and the components of the line-of-sight unit vector along the XE,

YE' ZE axes of the heliocentric ecliptic coordinate system. The computa-

tions are based on values of right ascension and declination obtained from

the section entitled "Mean Places of Stars, 1962.0" in Reference (36).

If a and 5 are, respectively, the right ascension and declination, the

components of the line-of-sight unit vector m are

m = cos5 cos a (5-79)
x E
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m = cos 6 sin a cos_ + sin 6 sin e
YE

(5-80)

m = -cos6 sin a sine + sin 6 cos E (5-81)
zE

e, the obliquity of the ecliptic, is equal to 23. 444 °.

and the celestial latitude _ are given by

X = arctan ImyE]mxE

The celestial longitude

(5-82)

1= arctan 2 2 1/2 (5-83)

m +m )XE YE

Figure 5.2 is a polar plot of the star locations on the celestial sphere.

The data indicate that five of the stars are at celestial latitudes between

-10 ° and + 10 ° and thus may be used as in-plane stars. In order of increas-

ing magnitude of latitude, they are

2i. Regulus

16. Spica

15. Antares

13. Aldebaran

18. Pollux

In addition, either Jupiter or Saturn may be used as far bodies for in-plane

measurements.

Canopus, the second brightest star, is the best situated for out-of-

plane measurements. Other stars that may be used for out-of-plane meas-

urements, in order of decreasing magnitude of latitude, are

5. Vega

19. Deneb

9. Achernar

155



90"

@18

®8

®It

06

®

150"
®1

®22

30" Q

®17

210"
330 °

Numbers refer to stars listed in Table 5-1.
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= Celestial longitude

= Celestial latitude

Figure 5.2 Celestial Longitude and Latitude of First
Magnitude Stars

156



5.13 Illustration of Procedure for Selection of Angular Measurements

An illustrative example serves to demonstrate the method of selecting

the sightings to be used for position determination. Figure 5.3 shows the

nominal position of the space vehicle and the positions of the near bodies

one year after launch on Trajectory 1034, which was also used for illustra-

tive purposes in Chapter 4. The lines of sight to the in-plane stars are

indicated in the figure. All positions shown are projections of the true

positions into the plane of the reference trajectory.

The distances of the near bodies from the vehicle are

for Mars, z M = 1.57 a.u.

for the sun, z S = 1.59 a.u.

for Venus, z V = 1.83 a.u.

for Earth, z E = 2.38a. u.

Mercury, the other near body, is not used for measurements in this

case, because its line of sight is too close to that of the sun. In Ref-

erence (5)it is stated that bodies whose lines of sight are within 15 ° of

that of the sun are optically undesirable for measurement purposes.

The configuration shown, which was picked at random, is somewhat

unusual in that the vehicle, Mars, and the sun form roughly an equilateral

triangle. In manned missions the distance of the vehicle from the launch

planet, or from the destination planet, or sometimes from both, is con-

siderably smaller than its distance from the sun.

Six measurements are to be selected, two out-of-plane and four in-

plane. The near bodies to be used are Mars, the sun, and Venus.

Since Mars and the sun are virtually equidistant from the vehicle,

the two best out-of-plane measurements are the angles that the line of

sight to each makes with the line of sight to Canopus, the first-magnitude

star situated closest to the celestial polar axis.

The four in-plane measurements are to be selected from the seven

shown in Figure 5.3. For simplicity the double-subscript notation of

previous sections has been replaced by a set of single numerical
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- First point of Aries

13, 15, 16, 18, 21 - stars from Table 5-1

A1, . . . , A 7 - Possible measurement angles

gl' " " " ' g7 - Corresponding geometry vectors

Positions and vectors shown are projections of actual

quantities intoplane of reference trajectory.

Figure 5.3 Selection of Measurement Angles
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subscripts. The celestial bodies involved in the seven possible angular

measurements are

AI:

A 2 :

A 3 :

A 4 :

A 5 :

A 6 :

A7:

Mars -Antares

Mars - Sun

Sun- Antares

Sun- Venus

Sun- Aldebaran

Venus - Antares

Mars - Venus

Ardares is used in all except one of the possible measurements involving

stars, because its line of sight forms the smallest angles with the lines

of sight to the near bodies. Because there are practical limitations on

the maximum angle that the vehicle's tracking system can measure, it

is desirable, when other factors are equal, to select the smallest possi-

ble angles. All the angles listed above are smaller than 120 °.

The geometry vectors gl through g7 are also shown in Figure

_. ,_. ±_L_ ±Lilal _giguLLUll ul iuui" iil-giali_ nieasureznents iS 'ua_u-' on tiie

magnitude and direction of these vectors. The selection can be made

visually if any pair of orthogonal axes can be found in the reference tra-

jectory plane such that the sums of the squares of the components of the

selected vectors along each of these axes can be seen to be maximized

and roughly equal to each other.

Axes parallel and normal to gl are convenient. The first vector

selected is gl" g4 is immediately ruled out because of its small mag_
L

nitude. The other three vectors to be chosen should have large com-

ponents normal to gl" In this particular example, g2' g3' g5' g6' and

g7 all have components normal to _1 that are approximately equal in

magnitude, so that the position uncertainty normal to gl is not appreciably

affected by the selection. In this circumstance, the three vectors of lar-

gest magnitude are selected, because they will cause the largest reduc-

tion in position uncertainity parallel to _1" The selected vectors are
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g7' g2' and g3" Although g3 and g5 are equal in magnitude, _3is selected

because the measurement angle A 3 is smaller than A 5.

The six angles selected involve the following pairs of celestial bodies:

lo

2.

3.

4.

5.

6.

These angles,

Mars - Canopus

Sun - Canopus

Mars - Antares

Mars - Venus

Mars - Sun

Sun - Antares

although selected without need for computation, satisfy the

mathematical criterion of producing a large value of the determinant of

(G S G S }. Regardless of which of the reference trajectory coordinate sys o
* * T

terns is used, the diagonal elements of (G S G S ) are large compared to

the off-diagonal elements, and the diagonal elements are of the same order

of magnitude.

5.14 Physical Considerations

In all of the preceding analysis the navigational problem has been

treated from a geometric viewpoint; in this section physical factors that

tend to affect the utilization of the measurements are briefly outlined.

In the Earth-based system corrections are applied to the data for the

effect of refraction of the radio signals emanating from the vehicle as they

pass through the earth's atmosphere, for the difference between the ap-

parent vertical at the tracking station (as measured by a plumb line)and

the geocentric vertical, and for the effect of aberration due to the trans-

verse velocity of the vehicle relative to the tracking station. Reference

(33) contains an analysis of the first two effects.

Larmore (37) presents a discussion of a number of physical phenomena

that affect the angular m.easurements in the self-contained system.

Larmore's analysis is based on the assumption that it is possible •to achieve

an ultimate accuracy of 0.2 seconds of arc or 1 microradian in the meas-

urement of celestial angles; in the present study the far more conservative
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figures of l0 seconds of arc or50 microradians are regarded as reasonable
for the accuracy of on-board angular measurements made with instrumen-

tation systems consistent with the present state of the art. As a consequence,

some of the effects that are regarded as significant by Larmore as assumed

to be negligible in this study.

One effect that is significant is the aberration of starlight due to the

component of vehicle velocity that is normal to the line of sight to the star.

This effect may cause an apparent shift of the line of sight to the star of

as much as 100 microradians. A related effect is the apparent shift in the

line of sight to a planet due to the finite velocity of light. If Mars is being
viewed from a distance of 1 a.u., the planet will have moved approximately

7, 000 miles in the time that it takes a light ray to travel from it to the
vehicle.

The phasing of the planets also presents some difficulty. The optical

apparatus is assumed to seek the point of maximum light intensity when

the body being tracked is not a point source. When the illuminated portion

of a planet is crescent-shaped, the point of maximum light intensity is re-

moved from the center of the planet by an amount which may be significant.

The difficulty is compounded by the fact that cloud formations and other

variations in planetary atmospheres are not predictable, and their effects

on the center of light intensity is not known precisely. For Venus at in-
ferior conjunction the difference between the center of light intensity and

the center of the planet could cause an angular measurement error of as

much as 100 microradians for a sighting made from the surface of the
earth.

Other sources of error mentioned by Larmore which are not considered

significant in the present analysis include the small inaccuracies in the

planetary position data of Reference (36}, the parallax effect due to the fact

that the star distances are not truly infinite, the effect of the proper motion

of the stars, and the fact that in a double star system the center of light

intensity does not coincide with the center of mass of the system.

The inexact knowledge of the size of the astronomical unit in terms of

standard lengths used in the laboratory does not directly affect the an'gular

measurements, since the angles are really ratios of lengths rather than

lengths themselves. However, this uncertainty does affect the accuracy of
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the prediction of vehicle position relative to the destination point. As a

result of recent tests in which radar signals have been reflected from

Venus, the uncertainty in the ratio of the astronomical unit to a laboratory
unit such as the kilometer or the mile has been reduced from one part in

104 to three parts in 106. The results of the radar investigation are re-

ported in Reference (38). The uncertainty of three parts in 106 is equivalent

to an uncertainty of 300 miles in the length of the astronomical unit.

The effect of relativity on instrumentation in the space vehicle is dis-

cussed in Reference (39). The primary effect is an induced drift rate in
the vehicle's clock relative to a standard clock on the surface of the earth.

Due to special relativity the vehicle's clock tends to run fast; due to general

relativity it tends to run slow. For travel within the solar system both el-

fects are at least two orders of magnitude smaller than the random drift

rate of one part in 106 which is assumed to be feasible for the clock in the

vehicle.

The systematic effects that are significant include the aberration of

starlight, the finite velocity of light, and the phasing of the planets. All

three qan be taken into account in pre-computing the reference value of a

space angle that is to be measured at a specified time.
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CHAPTER 6

APPLICATIONS OF THE THEORY

6.1 Summary

As an application of the guidance and navigation concepts developed

in previous chapters, a midcourse guidance system is proposed for a

manned flight from Earth to Mars. Other possible uses of the theory on

an interplanetary flight are discussed.

6.2 Introduction

The objective of this chapter is to show how the analytic approach

to guidance theory can be effectively utilized in the design of the guidance

system for a specific interplanetary mission. The type of mission that

is to be discussed is an outbound manned mission from Earth to Mars.

For a practical mission of this type the total transfer angle,

(fD - fI )' is equal to or less than 180 °. Both radio-command and self-

contained navigation systems are to be used. The nature of the mission

is assumed to be such that VTA guidance is permissible.

The system that is to be described is felt to offer the combined ad-

vantages of simplicity, reliability, and low cost without any reduction

in accuracy relative to previously proposed systems. These advantages

are a direct consequence of the analytic solution of the guidance equa-

tions.

6.3 Reference Trajectory

The reference trajectory for the interplanetary flight is pre- computed.

All known perturbative effects of any significance are included in the

formulation of the equations of motion. These equations are integrated

numerically on a large-scale digital computer. The method of compu-

tation is described in considerable detail in Reference (40).

If several reference trajectories have been computed, all of which

are approximately equally advantageous from the standpoint of time of

flight and fuel requirements for launch and injection, midcourse guid-

ance characteristics may affect the final choice of a trajectory, Compu-

tations such as those embodied in Figures 4.2, 4.13, and 4.16 are use-
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ful in comparing trajectories. The latter two indicate the sensitivity of

position variation at the destination to error in injection velocity; the first

is a composite picture of the effect of the orientation of the relative velocity

vector vR on the magnitude of the VTA correction.

6.4 Injection Guidance

Although this study is not directly concerned with the problem of in-

jection guidance, the illustrative example of Chapter 4 indicates clearly

where the emphasis should be placed in the design of the injection guid-

ance system. It is of primary importance to control the magnitude of the

velocity vector at injection into the heliocentric orbit. In terms of hard-

ware, the emphasis is to be placed on the accuracy of the integrating ac-

celerometer system and on achieving fast, reliable cut-off of the propul-

sion system.

6.5 Midcourse Guidance

Both the radio-command navigation system and the self-contained

navigation system are to be used for midcourse guidance. Each of the

two is used as the primary measurement source in the region of its

greatest accuracy, and each is used as a stand-by measurement source

when the other is the primary source. The vehicle's on-board computer

and its control system are designed so that inputs can be accepted from

either source at any time.

6.6 Radio-Command Guidance

TheEarth-based tracking system is the primary measurement source

during the early stages of the heliocentric ballistic trajectory. It remains

the primary source at least until the vehicle leaves Earth's sphere of per-

turbative relevance, at a distance of roughly two million miles from Earth.

The radio measurements, made several times a minute as long as the

vehicle is visible to a tracking station, are combined with the initial esti-

mate of the state vector at injection and used to determine the maximum

likelihood estimate of the state vector at the nominal time of arrival at the

destination.

Within Earth's sphere of perturbative relevance numerical integration

is used to compute the elements of the required transition matrices. The

computation is most simply accomplished in the non-rotating x y z
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coordinate system. The estimate obtained for 6x D is transformed from

x y z coordinates to p q z coordinates and then transmitted to the vehicle's

computer by means of radio signals from one of the tracking stations.

The destination point used in the computation is the point at which the

reference trajectory intersects the sphere of perturbative relevance of

Mars, at a distance of approximately one million miles from the planet.

The first midcourse correction is to be made at the optimum time

t C As explained in the next section, the determination of this time
opt

is accomplished by the computer on board the space vehicle.

Because it corrects for the effects of errors in injection guidance,

the first Inidcourse velocity correction is normally much larger in mag-

nitude than any succeeding corrections. It is therefore quite fortunate

that the Earth-based tracking system, with its thousands of individual

measurements, can be used to obtain an accurate estimate of 6XD-,

and it is likewise fortunate that the correction can be applied at the time

-when its magnitude is a minimum.

6.7 Self-Contained Guidance

Although the point at which the self-contained system replaces the

radio-command system as the primary source of input data will depend

on hardware development in the two types of systems, a reasonable point

for the change-over is assumed to be at the surface of the sphere of per-

turbative relevance. Since the first correction, at t C , is made at a
opt

point considerably beyond this sphere, measurements from both systems

are used in the computation of this correction. At the change-over point

the final estimate of 6x D made by the Earth-based system serves as

an "initial estimate" for the vehicle's computer, to be used in conjunc-

tion with subsequent position measurements to compute a more accurate

6_D-,_ from which t C and c V can be determined.
opt

Since all of the computations performed by the vehicle's computer

are related to that portion of the flight in which the vehicle is outside the

sphere of perturbative relevance of any planet, the analytic forms of the

guidance matrices can be used. No numerical integration is required of

the computer even though the time t C is deterrnined a posteriori.
opt
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In addition to being used for making the final determination of the first

midcourse correction, the self-contained system is used for computing any

subsequent corrections that may be required. The accuracy of subsequent

corrections is improved by utilizing the concept of the initial estimate im-

mediately after the last correction, as explained in Section 5.9.

Because of the presence of clock errors, the two-step procedure of

Chapter 5, involving first determination of both present position and clock
error and then determination of the estimated state vector at the destina-

tion, is used in all on-board computations.

For a voyage of roughly six months' duration a position determination

once a week is deemed reasonable. The nominal time of each position

determination and the specific angular measurements to be made at that

time are pre-programmed. The graphical procedure illustrated in Sec-

tion 5.13 is used to select six angles to be observed.

For each sighting at each measurement time the reference value of

the angle is stored in the computer. This value includes the effects of

the significant physical phenomena mentioned in Section 5.14. In addi-

tion, one number per measurement must be stored in the computer to

account for the fact that the angular measurement is not made precisely

at the time when the space ship clock reads ts, the nominal time of the
measurement; this number is a function of the velocity of the vehicle rel-

ative to the two bodies involved in the sighting.

Finally, in order to solve Equation (5-24)for the inferred values of

clock error and position variation at time tS, sufficient information must

* *-1 __sT)-I * * -1be stored so that the matrix product (G S U G S U S can be de,

termined. All the data required are known a priori with one exception,

2 Normally this variance is smallthe variance of the clock error Us0 .

enough to justify an _a priori estimate of its value at each t S. Then the

24 elements of the matrix product may be pre-computed and stored in

the memory of the on-board computer.

The intervals between times of position measurement need not be

equally spaced. Occasionally improved position accuracy can be achieved

by taking advantage of a favorable configuration of the planets at a partic-

ular time. For example, it is deemed inadvisable to sight on a planet
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whose line of sight makes an angle of less than 15 ° with the line of sight to

the sun. If a planet relatively close to the vehicle lies near the vehicle-

sun line at a weekly measurement time, the measurement time is changed

so that the planet's proximity can be exploited in improving the accuracy

of vehicle position determination.

In the analysis of Chapter 5 only celestial bodies of first magnitude

or brighter are considered for the optical sightings. Because the number

of such bodies is quite limited, the possibility of ambiguities (i. e., of

measuring the angle between an incorrect pair of celestial bodies)is re-

mote. Nevertheless, this possibility should be kept in mind when the

angular sightings are being selected.

Another consideration in selecting the sightings is the magnitude of

the _;ngle being measured. From practical considerations in the design

of the on-board sextants, it is not possible to measure space angles in

the vicinity of 180 °. A practical limit of 120 ° in the angle to be measured

is felt to be reasonable; this constraint is to be taken into consideration

in utilizing the graphical method of selecting the measurements.

After the computation of clock error and position variation is com-

pleted at a measurement time, the clock is corrected, and a revised

maximum likelihood estimate of 5x D is determined from Equation (5-37).

The determination of the revised 6_ D is the most complicated operation

required of the on-board computer, because, each time it is performed,

a new matrix of the form (Q _-1 _T)mus t be inverted. The inversion

cannot be carried out before the flight due to the fact that the uncertainty

matrix U in (5-37)depends on the actual measured values of the angles.

After the first correction has been applied, there is no further need

for determining t C , because it will have occurred prior to the time ofthe
opt

most recent set of measurements. The time at which any required addi-

tional correction is applied is discussed in the next section. Each cor-

rection vector c V is computed analytically from the matrix forms of

Chapter 3.

6.8 Strategy for Determining Whether to Make a Correction

After the first correction has been made, the necessity for making

additional corrections is determined by the predicted miss distance at
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the destination. The specification for the mission defines a permissible

miss distance. If the predicted miss distance is computed to be Well

within the permissible value, it is obviously unnecessary to make any

additional corrections.

In order to give these statements quantitative significance, the miss

distance will be re-defined, and the concept of circular probable error will

be introduced. As indicated in Section 2.14, the miss distance vector

5_ is that component of the position variation 5r D which lies in the plane

normal to the relative velocity vector v R. The estimated miss distance
A

vector, G_, can be computed by transforming the maximum likelihood

estimate GAXD into the critical-plane coordinate system. The first two

elements of the transformed vector are the components of the two-

dimensional vector 5_. The transformation is accomplished mathemat-

ically by modifying the equations of Section 5.4 as follows:

6m _T *T
= YD (SxD)W (6-1)

where

X D

O 3

O 3

X D

(6-2)

and X is the standard transformation matrix for transforming a three-

dimensional vector into the critical-plane coordinate system.

^ ** *T-
(SXD)w__ = (yD Q _-I _T yD ) I yDQ* * _-i 6___ (6-3)

* ***-1 _ 1(ED) W = (e__D) w (e_DT)w = (YD Q U _W )- (6-4)

The first two elements of the first two rows of (ED) w constitute the

2-by-2 covariance matrix of the uncertainty in 5_. This matrix is desig-
,

nated Ep. The equi-probability ellipse associated with the uncertainty

in 6_ has the form
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}E D
ED_ _ P

= k2
(6-5)

where e D_ and E D are the first two components of the uncertainty vector

(_D)W . If k = 1. 1774, the probability thatthe uncertainty vector of 6_

lies within the boundaries of the ellipse is 0.5. When the measurements

are properly chosen, the axes of the ellipse are approximately equal in

length, so that the ellipse closely resembles a circle. The radius of the

circle whose area is the same as that of the ellipse is known as the "cir-

cular probable error" (CPE). The CPE is a convenient measure of the

accuracy of the prediction of the miss distance.

CPE to the determinant of E is
P

The equation relating

1/4

CPE 1.1774 ,.[Ep'= (6-6)

Appendix P contains a more detailed treatment of CPE.

Every time a measurement is made, the CPE is reduced slightly.

"Every time a velocity correction is applied, the CPE is increased due to

the uncertainty _/associated with the correction.

Before a correction is applied, the predicted miss distance is 5_-,

and the circular probable error is (CPE) . Immediately after applica-

tion of a VTA correction, the predicted miss distance 5_ + is zero, and

thecircular probable error (CPE) + is greater than (CPE)-.

If the sum of the magnitude of 6_- and (CPE)- is smaller than the re-

quired position accuracy at the destination, no further correction is nec-

essary.

If the sum of the magnitude of 6_- and (CPE)- exceeds the required

position accuracy, an additional correction should be made. The time

of additional correction is determined by the computed value of (CPE) +.

As the vehicle gets closer to the destination, the magnitude of (CPE) +

gets smaller, but the magnitude of the required correction gets larger.

Therefore, the correction is made at the earliest time at which (CPE) +

falls within the specification for position accuracy at the destination.
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With the high accuracy obtained from the Earth-based tracking system

for the first correction and with a reasonably accurate midcourse thrust

application, it is felt that three midcourse corrections, and possibly only

two, are sufficient to meet the requirements of a typical manned inter-

planetary mission.

6.9 Other Applications

The theory developed in the preceding chapters has several applica-

tions in addition to those already illustrated by the proposed guidance sys-

tem for the manned interplanetary mission. The additional applications

include the following:

I. Direct calculation of the midcourse velocity correction by crew

members on an interplanetary mission.

2. Calculation of abort guidance requirements by crew members

on an interplanetary mission.

3. Systematic study of the effect of parameters associated with the

reference trajectory on midcourse guidance requirements for an inter-

planetary mission.

Equation (3-133)j the analytic expression for the elements of the

correction matrix KCD , is sufficiently simple that a hand calculation of

the velocity correction is feasible when the correction time tC is specified

and the on-board digital computer has provided an estimate of 5r D . Such

a calculation serves as a check of the on-board digital computer. On a

mission of many months' duration the psychological value of the calculation

in providing a useful outlet for the energies of the flight crew may be sig-

nificant.

p

Hand calculations for abort guidance are also feasible. If the mis-

sion has to be aborted while the vehicle is outbound from Earth and if the

on-board computer is incapacitated, it is possible that sufficient tabular

data can be supplied to the flight crew so that measurements of angular

deviations relative to a special abort reference trajectory can be proc-

essed by hand calculation to determine the required velocity corrections.

The use of the analytic forms of the guidance matrices to make a

parametric study of reference trajectories is an extension of the type of
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analysis presented in Chapter 4, in which only one reference trajectory

was studied. There are relatively few parameters involved, and the range

of some of these is quite limited for a specified type of mission. Conse-

quently, the amount of computation required falls within reasonable bounds.

6. I0 Concluding Remarks

The fundamental difference between the midcourse guidance system

proposed in this chapter and those that have been previously suggested is

that the correction times in the proposed system are not pre-programmed,

but rather are determined as a function of the variations measured during

the flight. This degree of flexibility is made practical by the development

of the analytic form of the correction matrix KCD. With this development

the velocity correction vector at any correction time t C can be readily

determined by an on-board digital computer of modest capacity.

The flexibility in the selection of time of correction is combined with

the empirical method developed for determining the optimum time of cor-

rection to ensure that the first midcourse correction, which is much larger

than any succeeding correction, is made at the time when its magnitude is

minimized. The times of the remaining corrections are adjusted to achieve

the best compromise between magnitude of the correction and position ac-

curacy at the destination.

The proposed system also differs from previous systems in that it

accounts for clock errors and at the same time utilizes all the measure _

ment data in predicting the vehicle's state at the nominal time of arrival

at the destination.

Finally, the uncoupling between in-plane and out-of-plane motion is

exploited to provide a method of selecting those optical sightings which

provide the most accurate estimate of present position. The method is

graphical; no elaborate computer program is required.
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CHAPTER 7

CONC LUSIONS AND RECOMME NDA TIONS

7. ! Summary

The subject matter of the thesis is briefly reviewed. The features

of the analysis that are felt to be original are listed. Those areas in

which further study appears desirable are indicated.

• ]

7.2 Resume of Guidance Theory

The problem of midcourse guidance of an interplanetary vehicle has

been linearized by assuming that the vehicle's actual trajectory experiences

only small departures from a known pre-computed reference trajectory.

Matrix forms have been used to obtain a compact set of guidance equations

for the vehicle's motion in an n-body gravitational field.

The difference between the actual trajectory and the reference tra-

jectory is expressed mathematically as a six-component vector consisting

of the three components of position variation and the three components of

velocity variation at some specified time. This vector is known as the

state vector. The most useful state vector for guidance analysis is the

one for which the specified time is the nominal time of arrival at the

de stination.

The state vector at one time is related to the state vector at some

other time by means of a 6-by-6 matrix known as the transition matrix.

If the time of arrival is fixed, the midcourse velocity correction

required at some time t C is a function of the predicted position variation

at the destination. The negative of the 3-by-3 matrix relating the velocity

correction vector to the position variation vector is called the correction

m at rix.

When the time of arrival is not critical and small variations in arrival

time are permissible, the velocity correction of minimum magnitude at

time t C is a function of that component of the position variation at the

destination which lies in the plane perpendicular to the relative velocity
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of the vehicle with respect to the destination planet. This component of

position variation is the miss distance. For this type of velocity cor-

rection the form of the guidance equations can be simplified by intro-

ducing the rotating coordinate system known as the critical-plane

coordinate system; in this system both the velocity correction vector

and the miss distance vector are two-dimensional vectors.

The magnitude of the velocity correction is a function of the time at

which the correction is applied. For the case of variable arrival time,

the correction time for which the magnitude of the correction is a

minimum is determined empirically as a function of the angular orienta-

tion of the miss distance vector in the plane perpendicular to the relative

velocity Vector.

For the n-body problem the elements of the transition matrix are

'computed by numerical integration. The correction matrix is the inverse

of one of the four 3-by-3 sub-matrices constituting the transition matrix.

For the midcourse phase of an interplanetary journey, when the

vehicle is outside the sphere of perturbative relevance of any planet, the

n-body problem can be reduced to a two-body problem without any signi-

ficant loss of accuracy. The reference trajectory is then a conic section.

The plane containing the reference trajectory is the reference trajectory

plane. The actual trajectory is also a conic section; its plane normally

differs slightly from the reference trajectory plane.

The two-body assumption simplifies the equations of motion of the

vehicle. The variant motion in the plane of the reference trajectory is

uncoupled from the variant motion normal to the reference trajectory

plane. By proper choice of a coordinate system the sixth-order system

is sub-divided into two independent systems, one of fourth order and the

other of second order. These two systems have been integrated analytic-

ally for the case when the conic section is an ellipse.

The same analytic solution is also obtained in a different manner,

namely by applying the techniques of the calculus of variations to a set

of six orbital elements which define the reference trajectory.
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The analytic solution is used to obtain analytic expressions for all

the elements of the transition matrix, the correction matrix, and several

other matrices that are useful in the development of guidance theory.

There are three types of combinations of the correction time tC and

the arrival time tD in which the matrix that must be inverted in order to
evaluate the correction matrix becomes singular. When any of these

singularity conditions occurs, the correction matrix is indeterminate,

and no finite velocity correction can be computed by means of fixed-time-

of-arrival guidance. If variable-time-of-arrival guidance is used, the

effects of two of the singularity types are obliterated, and finite velocity

corrections can be computed even when the conditions for these singular-

ity types occur.

7.3 R_sume_of Navigation Theory

As used in this thesis, the term navigation refers to the obtaining and

processing of measurements made during the space voyage in order to

compute the predicted state vector at the nominal time of arrival at the

destinati0.n. This predicted state vector is the one utilized in the guidance

theory to determine when and how to make a midcourse velocity correction.

Two types of navigation systems are described, the Earth-based radio-

command system and the self-contained optical system. A linear theory

is developed to process the measurements made in either system. Since

redundant measurements are made, the method of maximum likelihood is

used to estimate the predicted state vector at the destination.

The Earth-based system uses radio antennas to track the vehicle.

Large amounts of data are processed by a centrally located digital computer

facility. The system is most effective when the vehicle is relatively close

to Earth.

The self-contained system utilizes two telescopes to measure the angles

between lines of sight to pairs of celestial bodies. Relatively few measure-

ments are made and are processed by the computer on board the space craft.

Clock error is a negligible factor in the Earth-based system. However,

it can be significant in the self-contained system. To account for clock

error and to correct for it, the self-contained system's computation is a

two-step process. First, a group of measurements is made at a single

174



nominal measurement time. From this information estimates are made of

the position variation at the nominal measurement time and of the clock

error. The clock is corrected immediately. The process is repeated at

other measurement times, and from the group of estimates of position
variation, an estimate is made of the state vector at the time of arrival

at the destination.

A graphical procedure, based on the lack of coupling between in-plane

and out-of-plane variant motion, is developed for selecting those optical

sightings which give the greatest accuracy of position determination at a

given measurement time.

A set of pseudo-measurements, consisting of the components of the

state vector at launch or immediately following a midcourse correction,

is used to improve the accuracy of the predicted state vector at the time

of arrival.

7.4 Novel Features of the Analysis

It is the author's conviction that, in an analytic study of the type that

has been presented, he is under some obligation to indicate clearly those

results which he considers original. This is a risky undertaking, par-

t_r,,1_ly in a field in which so many investigations are currently being

carried on. It is therefore with considerable trepidation that the list

appearing below has been prepared. The following features of the analysis

are thought to be novel:

1. The relatively simple and straightforward analytic solution of the

variant equations of motion by two different methods for the case of an

elliptical reference trajectory.

2. The exploitation of the analytic solution to obtain closed-form

expressions for the elements of the fundamental guidance matrices.

3. The discovery of the type of singularity called the X = 0 singular-

ity in Chapter 3, and the relation between singularities of the X = 0 type

and the minima of the time-of-flight curves obtained from Lambert's

theorem.
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4. The utilization of the critical-plane coordinate system in

clarifying the equations of variable-time-of-arrival guidance, and the

proof that in this coordinate system one of the four elements of the

matrix relating the velocity correction vector to the miss distance

vector is identically zero if the reference trajectory is a two-body

trajectory.

5. The deterministic method of finding the optimum time to apply

a variable-time-of-arrival velocity correction.

6. The proof that two of the three types of singularities that

characterize fixed-time-of-arrival guidance are effectively removed

when variable-time-of-arrival guidance is used.

7. The selection of "in-plane" and "out-of-plane" stars for use

in position determination from optical sightings, and the graphical

method of determining a combination of sightings that yields high

position accuracy.

8. The physical explanation of the effect of clock error on naviga-

tional accuracy, including an explanation of why clock errors cannot

be filtered if individual measurements are made at widely separated
time intervals.

7.5 The Analytic Approach

Most of the features mentioned in the last section are either mani-

festations of or consequences of the analytic approach to guidance theory.

If theyare novel, it is only because this approach has never before been

intensively investigate d.

The approach has yielded results that are valuable both academically

and practically. From the academic viewpoint it has led to a deeper

insight into the physical characteristics of elliptical motion. From the

practical viewpoint it materially reduces the amount of computation

required for guidance studies and applications, and the results obtained

are more accurate because the round-off error is negligible.

If the author is permitted the liberty of expressing an opinion that

may be controversial, he would like to suggest that the reason why the
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analytic approach has not been more actively pursued is closely associated

with the present availability of high-speed digital computers. It is dif-

ficult for a human being to generate the motivation for obtaining an analytic

solution involving weeks, or even months, of algebraic drudgery when the

computer offers the tantalizing prospect of providing any desired amount

of numerical data with a relatively insignificant amount of human effort.

It is felt that in the present case, at least, the drudgery has proved to be

justified.

7.6 Recommendations for Further Study

The following topics, related to the subject matter of this thesis, are

suggested as possibly fruitful subjects of future investigations:

1. Analytic solution of the variant equations of motion for hyperbolic

reference trajectories.

2. Empirical approach to the problem of finding closed-form ex-

pressions for the elements of the guidance matrices when the reference

trajectory is a three-body trajectory.

3. Further investigation of the critical-plane coordinate system for

use in variable-time-of-arrival guidance.

4. Parametric study of reference trajectories for specific types of

missions.

The analytic solution for hyperbolic reference trajectories is based

on the same approach as that presented in Chapter 3 for elliptical refer-

ence trajectories. The solution will be used for obtaining a new set of

closed-form expressions for the elements of the guidance matrices.

When a closed-form solution is available for hyperbolic as well as

elliptical reference trajectories, there is a distinct possibility that the

two solutions can be combined and properly weighted, so that an empirical

closed-form solution of the guidance equations can be obtained for an

interplanetary vehicle when it is within the sphere of perturbative rele-

vance of the destination planet. If such a solution is achieved, the

destination point of the mideourse guidance system can be moved up to

the point of elosest approach to the planet, and the midcourse and ter-

minal guidance systems can effectively be merged.

177



It is felt by the author that more can be learned about variable-time-

of-arrival guidance by investigation of the variation in orientation of the

noncritical vector w as a function of the time of correction. A physical

explanation should be sought for the fact that one of the four elements

relating the velocity correction to the miss distance vector in the critical-

plane coordinate system is identically zero.

The analytic solution for elliptical reference trajectories reduces the

parameters affecting the guidance equations to a relatively small number.

It should be a relatively simple matter to make a systematic numerical .

study of the effect of variations in these parameters on guidance require-

ments and thus to determine which reference trajectories are, from a

guidance viewpoint, most desirable for a specified mission.
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